
IN
F 3110 –

2018

INF3110 – Programming Languages
Scope and Runtime Organization

9/21/18 1

IN
F 3110 –

2018

9/21/18 2

Outline: Runtime Organization I & II

§ Block-structured languages and stack organization
§ In-line Blocks

– activation records
– storage for local and global variables

§ First-order functions
§ Parameter passing
§ Higher-order functions (not today)

IN
F 3110 –

2018

9/21/18 3

Simplified Reference Model of a Machine
- used to understand memory management
Registers
(not in this class)

Environment
Pointer

Program
Counter

DataCode

Heap

Stack

Our main focus today

IN
F 3110 –

2018

9/21/18 4

Block-Structured Languages
§ Blocks are syntactical structures
§ Can be nested within each other

...;
{ int x = 2;

{
int y = 3;
x = y+2;

}
};
...

– Storage management – memory representation
§ Enter block: allocate space for variables
§ Exits block: space may be de-allocated

new variables declared in nested blocks

inner
block

outer
block

x: global variable
y: local variable

IN
F 3110 –

2018

9/21/18 5

Examples

§ Blocks in common languages
– C/C++/Java/C# { … }
– Algol/Simula/Basic begin … end
– ML let … in … end
– Python (whitespace!)

§ Two forms of blocks to start with
– In-line blocks
– Blocks associated with functions

or procedures

– To come: blocks associated with classes:

class Node
{

Node left, right;
void insert(Node n)
{ ...
}

};

IN
F 3110 –

2018

9/21/18 6

Some basic concepts
§ Declaration

– Specifies properties (name, type, kind) of an identifier
§ Scope

– Region of program text where declaration is visible
§ Lifetime

– Period of time when location is allocated

– Inner declaration of x hides outer one.
– Called �hole in scope�

– Lifetime of outer x includes time when inner
block is executed

– Lifetime ¹ scope

{ int x = … ;
{ int y = … ;

{ int x = … ;

…; x; …
};
…; x; …

};
};

IN
F 3110 –

2018

9/21/18 7

In-line blocks

§ Activation record
– Data structure stored on run-time stack
– Contains space for local variables in a block

May also need space for intermediate results like (x+y), (x-y)

{ int x = 0;

int y = x+1;

{
int z = (x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Do we need activation records for blocks? Yes, for loops (and funcs etc)

IN
F 3110 –

2018

9/21/18 8

Activation record for in-line block

§ Environment pointer
– Pointer to current record on stack

§ Control link (dynamic link)
– Pointer to previous record on

stack
– Why is it called dynamic?

§ Push record on stack
– Set new control link (in new

record) to point to old env ptr
– Set env ptr to new record

§ Pop record off stack
– Follow control link of current

record to reset environment
pointer

– (No need to actively blank
memory)

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

Stack grow
s dow

nw
ards

IN
F 3110 –

2018

9/21/18 9

Example

Control link

x
y

0
1

x+y
x-y

Environment
Pointer

1
-1

Control link

z -1

{ int x = 0;

int y = x+1;

{ int z = (x+y)*(x-y);

// figure shows state here!

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block

Set value of z

Pop record for inner block

Pop record for outer block

IN
F 3110 –

2018

9/21/18 10

Initial values – what is in the activation block?

§ Specified initial value

§ Default initial value

§ Languages differ

– C/C++: no default initial value

§ Undefined?

§ Arbitrary value?

– Algol/Simula/Java/C#:

default initial value

{

int x = 0;

int y;

{

int z = (x+y)*(x-y);

};

};

IN
F 3110 –

2018

http://stackoverflow.com/questions/31739792/is-uninitialized-local-variable-the-
fastest-random-number-generator

http://stackoverflow.com/questions/31739792/is-uninitialized-local-variable-the-fastest-random-number-generator

IN
F 3110 –

2018

9/21/18 12

Scope rules

§ Global and local variables

– x, y are local to outer block
– z is local to inner bock
– x, y are global to inner block

§ Static scope
– global refers to declaration in closest enclosing block

§ Dynamic scope
– global refers to most recent activation record

These are the same until we consider function calls. à

{ int x = 0;

int y = x+1;

{ int z = (x+y)*(x-y);

};

};

IN
F 3110 –

2018

9/21/18 13

Example – static/dynamic scoping
{ -- block 0

int x = 0;
{ -- block 1

int x = 1;
};
{ -- block 2

int x = 2;

};
{ -- block 3, called

int z = x;

}
}

Control link

x 0

Control link

x 2

Control link

z ??

Control link

x 1

If block 1 executes block 3
Static scope: z = 0
Dynamic scope: z = 1

If block 2 executes block 3
Static scope: z = 0
Dynamic scope: z = 2

1 2

3

If block 0 executes block 3
Static scope: z = 0
Dynamic scope: z = 0

0

? ? ?

IN
F 3110 –

2018

9/21/18 14

Functions and procedures

§ Activation record must include space for

– parameters
– local variables
– return address
– return value

(an intermediate result)
– location to put return value

on function exit

int fact(int n) { … }
int i, j;
...
i = 3;
j = fact(i);
print(j)

IN
F 3110 –

2018

9/21/18 15

Activation record for function call
§ Return address

– Location of code to execute on
function return

§ Return-result address
– Address in activation record of

calling block to receive return
value

§ Parameters
– Locations to contain data from

calling block

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return-result addr

IN
F 3110 –

2018

9/21/18 16

Example
§ Function

fact(n) = if n <= 1 then 1
else n * fact(n-1)

§ Return result address
– location to put fact(n)

§ Parameter
– set to value of n by calling

sequence
§ Intermediate result

– location to contain value of
fact(n-1)

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

IN
F 3110 –

2018

9/21/18 17

Function call

Return address omitted; would be
ptr into code segment

fact(n) = if n<= 1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment
Pointer

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Control link

fact(n-1)
n

Return-result addr
2

fact(2)

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

Function return next slide ®

IN
F 3110 –

2018

9/21/18 18

Function return – store result, pop record from
the stack

Control link

fact(n-1)
n

Return result addr
3

fact(3)

Control link

fact(n-1)
n

Return result addr

1
2

fact(2)

Control link

n
Return result addr

1

fact(1)

fact(n) = if n<= 1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return result addr
3

fact(3)

Control link

fact(n-1)
n

Return result addr

1
2

fact(2)
2

IN
F 3110 –

2018

9/21/18 19

Access to global variables

§ Two possible scoping conventions
– Static scope: refer to closest enclosing block (syntactically)
– Dynamic scope: most recent activation record on stack

§ Example

int x = 1;
function g(z) = x+z;
function f(y) =

{
int x = y+1;
return g(y*x)

};
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z?

IN
F 3110 –

2018

9/21/18 20

Activation record for static scope

§ Control link (dynamic link)
– Link to activation record of

previous (calling) block
§ Access link (static link)

– Link to activation record
corresponding to the closest
enclosing block in program
text

– Why is it called static?
§ Difference

– Control link depends on
dynamic behavior of program

– Access link depends on static
form of program text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

IN
F 3110 –

2018

9/21/18 21

Static scope with access links (C-like notation)
{
int x = 1;

int function g(z) { return x+z };

int function f(y) {
int x = y+1;
return g(y*x)

};

main() {
f(3);

}
}

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

control link
access link

access link
control link

main

Use access link to find global
variable:
§ Access link is always set to

frame of closest enclosing
lexical block

§ For function body, this is the
block that contains function
declaration

g …
f …

IN
F 3110 –

2018

9/21/18 22

Static scope with access links (ML-like
notation)

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

g …

f …

control link
access link

control link
access link

access link
control linkUse access link to find global

variable:
§ Access link is always set to

frame of closest enclosing
lexical block

§ For function body, this is the
block that contains function
declaration

int x = 1;
function g(z) = x+z;
function f(y) =

{
int x = y+1;
return g(y*x)

};
f(3);

IN
F 3110 –

2018

9/21/18 23

Issues for first-order functions

§ Access to global variables

§ Parameter passing
– pass-by-value
– pass-by-reference
– pass-by-name

int a = 5;

void f(int x)
{

x = x+1;
}

void main()
{

f(a);
print(a);

}

ü

IN
F 3110 –

2018

9/21/18 24

Parameter passing
§ Call-by-value (or “pass-by-value”)

– Caller places R-value (contents) of actual parameter in activation
record

– Function cannot change value of caller�s variable
– Reduces aliasing (alias: two names refer to same location)

§ Call-by-reference
– Caller places L-value (address) of actual parameter in activation

record
– Function can assign to variable that is passed (must have an L-

value!)
– Aliasing

§ Call-by-name
– Actual parameter expression is passed as such and evaluated

whenever the formal parameter is used in the function
– (Not common in most languages)

IN
F 3110 –

2018

9/21/18 25

Different variants of copying the value

§ Call-by-value
– Local variable

assigned at call

– f(int in x){...}

§ Call-by-result
– Local variable not

assigned at call, but
returned at exit

– f(int out x){...}

§ Call-by-value-result
– Local variable

assigned at call, and
returned at exit

– f(int in-out x){...}

int a = 5;

void f(int x)
{

x = x+1;
}

void main()
{

f(a);
print(a);

}

f.x = a
...

...
a = f.x

f.x = a;
...

a = f.x

a

global

x

f

IN
F 3110 –

2018

§ Java?
§ C#?
§ Python?
§ JavaScript?
§ SML?

9/21/18 26

What is the parameter passing semantics of
YOUR favorite language?

class Person {
public String name = “”;

}

public static void main(String[] args) {
Person p = new Person();
p.name = “Wonderwoman!”;
changeName(p);
println(p.name); // what happens here?

}

public static void changeName(Person p) {
p.name = “Batman!”;

}

IN
F 3110 –

2018

§ Java?
§ C#?
§ Python?
§ JavaScript?
§ SML?

9/21/18 27

What is the parameter passing semantics of
YOUR favorite language?

class Person {
public String name = “”;

}

public static void main(String[] args) {
Person p = new Person();
p.name = “Wonderwoman!”;
changeName(p);
println(p.name); // ?

}

public static void changeName(Person p) {
p = new Person();
p.name = “Batman!”;

}

IN
F 3110 –

2018

§ Java?
§ C#?
§ Python?
§ JavaScript?
§ SML?

9/21/18 28

What is the parameter passing semantics of
YOUR favorite language?

class Person {
public String name = “”;

}

public static void main(String[] args) {
Person p = new Person();
p.name = “Wonderwoman!”;
changeName(p);
println(p.name); // ?

}

public static void changeName(ref Person p) {
p.name = “Batman!”;

}

IN
F 3110 –

2018

§ Java?
§ C#?
§ Python?
§ JavaScript?
§ SML?

9/21/18 29

What is the parameter passing semantics of
YOUR favorite language?

class Person {
public String name = “”;

}

public static void main(String[] args) {
Person p = new Person();
p.name = “Wonderwoman!”;
changeName(p);
println(p.name); // ?

}

public static void changeName(ref Person p) {
p = new Person();
p.name = “Batman!”;

}

IN
F 3110 –

2018

§ Java?

§ C#?

§ Python?

§ JavaScript?

§ SML?

9/21/18 30

What is the parameter passing semantics of
YOUR favorite language?

class Person {

public String name = “”;

}

public static void main(String[] args) {

Person p = new Person();

p.name = “Wonderwoman!”;

changeName(p);

println(p.name); // ?
}

public static void changeName(ref Person p) {

p = null;

}

IN
F 3110 –

2018

9/21/18 31

Call by-reference
§ The ’x’ (within f) is set to

the address of ’a’ (L-
value).

§ The assignment ’x+1’
assigns the value of ’x+1’,
that is 6, to the variable
whose L-value is kept by
’x’, i.e. the global variable
’a’.

§ ’a’ is therefore changed to
6, and 6 is printed.

int a = 5;
void f(int x)
{
x = x+1;

}
void main()
{
f(a);
print(a);

}

a

global

x

f

IN
F 3110 –

2018

9/21/18 32

Example - aliasing

void f(ref real v1, ref real v2, ref real v3) {
v1 = v1 - v3;
v2 = v2 + v3;

};

real x, y, z;

x = 4.0;
y = 6.0;
z = 1.0;

f(x, y, z); // ? x = 3.0;
y = 7.0;

x = 0.0;
y = 6.0; f(a[i], a[j], a[k]);

f(x, y, x) // ?

Shouldn’t the compiler
warn me about this stuff???

IN
F 3110 –

2018

Going forward

9/21/18 35

• Higher-order functions
• Closures
• Classes and objects

Next time:
• Part II of this lecture

