9/28/18

INF3110 — Programming Languages
Runtime Organization part Il

Eyvind W. Axelsen
eyvinda@ifi.uio.no | @eyvindwa E2
http://eyvinda.at.ifi.uio.no

Slides adapted from previous years’ slides
made by Birger Maller-Pedersen

birger@ifi.uio.no

!
Z
> y|
W
[
.
(=]
1
N
(=]
[t
o

Today: Higher-Order Functions, and Objects at

runtime

= Higher-order functions:

— Functions passed as arguments

— Functions that return functions from nested blocks

— Need to maintain environment of function
= Simpler case

— Function passed as argument

— Need pointer to activation record “higher up” in stack
= More complicated case

— Function returned as result of function call
— Need to keep activation record of returning function

810C - 0I1€ ANI

= QObjects at runtime
— Which activation blocks do we use?

= Fun with Javascript
— The worlds most popular(?) language!
— Heavy use of higher-order functions

9/28/18 2

Repetition from last time

NOT SURE IFGOOD SONG

!
Z
> y|
W
[y
[
(=)
1
[\®)
(=]
[y
o

OR BRAINWASHED{EROM REPETITION

Block-Structured Languages

» Blocks are syntactical structures
= Can be nested within each other

new variables declared in nested blocks
- {intx= 27
{

outer inty = 3; Inner x: global variable
block X = y+2; block y: local variable

}

810C - 0I1€ ANI

S

— Storage management — memory representation
= Enter block: allocate space for variables
= Exits block: space may be de-allocated

9/28/18 4

spJemumop smoub yoeig

Activation record for in-line block

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

9/28/18

Environment pointer
— Pointer to current record on stack
Control link (dynamic link)

— Pointer to previous record on
stack

— Why is it called dynamic?
Push record on stack

— Set new control link (in new
record) to point to old env ptr

— Set env ptr to new record

Pop record off stack

— Follow control link of current
record to reset environment
pointer

— (No need to actively blank
memory)

810C - 0I1€ ANI

Some basic concepts

= Scope
— Region of program text where declaration is visible
= Lifetime
— Period of time when location is allocated -
Z
=
=
(3 -g
- { inty=...; =
‘\ - {= e] — Inner declaration of x hides outer one.
Meay oy — Called “hole in scope”
g };‘\| — Lifetime of outer x includes time when inner
- block is executed
<k — Lifetime # scope

N

9/28/18 6

Access to global variables

= Two possible scoping conventions
— Static scope: refer to closest enclosing block (syntactically)
— Dynamic scope: most recent activation record on stack

= Example

Z
o
intx = 1; outer block X 1 =
function g(z) = x+z; =
function f(y) = f(3) y 3 §
{ X 4
int x = y+1;
}.return g(y*x) g(12) 7 12
f(3);

How do we know which x is used for expression x+z?

9/28/18 7

Activation record for static scope

E = Control link (dynamic link)

Control link t — Link to activation record of
| previous (calling) block

= Access link (static link)

— Link to activation record
corresponding to the closest
enclosing block in program

Parameters text
— Why is it called static?

= Difference

Intermediate results _ Control link depends on
Environment dynamic behavior of program

Pointer — Access link depends on static
form of program text

Access link

Return address

Return result addr

810C - 0I1€ ANI

Local variables

9/28/18 8

Simple example for a language with blocks and
functions

{ outer block X 1
intx=1;
int function g(z) {
return x+z
I3 -
main —.| control link Z
int function f(y) { access link =
int x = y+1; 3
return g(y*x) S
}; f(3) —|__control link =
access link
main() { y 3
}f(3); X 4
} g(12) control link
access link
Z 12

9/28/18 9

A\ au U U §

\S N VA 2

wil EAR

9/28/18

Functions as parameters: why?

Given a Person class and a list of Persons

Can you write a function that finds all persons that
- Are female?

- Are older than 50 years?

- Like drinking beer?

9/28/18

810C - 0I1€ ANI

11

Functions as parameters: why?

Given a Person class and a list of Persons

Can you write a function that finds all persons that
- Are female?

- Are older than 50 years?

- Like drinking beer?

A first attempt:

810C - 0I1€ ANI

List<Person> findPersonsThatAreFemale(List<Person> persons) {
List<Person> filteredList = new List<Person>();
for(Person p in persons) {
if(p.gender == "female”) {
filteredList.Add(p);
}

}

return filteredList;

}

9/28/18 12

Functions as parameters: why?

Given a Person class and a list of Persons

Can you write a function that finds all persons that
- Are female?

- Are older than 50 years?

- Like drinking beer?

A first attempt:

810C - 0I1€ ANI

List<Person> findPersonsThatAreOlderThan50(List<Person> persons) {
List<Person> filteredList = new List<Person>();
for(Person p in persons) {
if(p.age > 50) {
filteredList.Add(p);
}

}

return filteredList;

}

9/28/18 13

Why functions as parameters? — DRY!

List<Person> filterPersons(List<Person> persons, (Person - Boolean) filter) {
List<Person> filteredList = new List<Person>();
for(Person p in persons) {

if(filter(p)) {
filteredList.Add(p); Imaginary func syntax

}
}

return filteredList;

}

filterPersons(persons, function(Person p) { return p.age > 50 });

filterPersons(persons, function(Person p) { return p.gender == "female” });

9/28/18

810C - 0I1€ ANI

14

Is this in use In languages today?

Traditional OO approach: make a class out of it!

E.g. in Java (pre v8):

Collections.sort(list, new Comparator<MyClass>() {
public int compare(MyClass a, MyClass b)
{
// compare objects here
}
};

What is going on here?

« Comparator<T> is an interface, and T is a type parameter

» This interface has one method signature, int compare(T a, T b);

» Starting from the first {, we have an anonymous class
implementing this interface

9/28/18

810C - 0I1€ ANI

15

Is this in use In languages today?

Functional approach:

Java (v8 and up):
list.sort((a, b) -> a.isGreaterThan(b));

C#:
myList.Where(a => a.Number > 42).0OrderBy(a => a.Number)
.ThenBy(a => a.FooBar);

Python:
Celsius =[39.2, 36.5, 37.3, 37.8]
Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)

JavaScript (Node):
app.get(/somepath/.date’, function (req, res)
res.setHeader('Content-Type', ‘application/json’);
fetchStuff({ date: req.params.date}, function (error, result) {
if (error) console.log(error);
res.end(result);
});
1;

Pass function as argument

There are two
declarations of x

{intx =4; Which one is in scope
for each usage of x?

{int f(int y) {return x*y;}
{ int g(int—int h
int x=7;

return h(3) + x; Formal function
parameter

Actual function parameter

9/28/18

810C - 0I1€ ANI

17

Static Scope for Function Argument

{intx =4; X
{int f(int y) {return x*y;}

{ int g(int—int h) { f
int x=7; g %
return h(3) + x; =
} g(f) h :
a(f); X =

}

} @*®% var

follow access link

How is access link for h(3) set? > Next slides
9/28/18 18

Closures

= Function value is pair closure = {env, code)

= When a function represented by a closure is called

— Allocate activation record for call (as always)

— Set the access link in the activation record using the
environment pointer from the closure

810C - 0I1€ ANI

9/28/18 19

Function Argument and Closures

Run-time stack with access links

A{intx =4; Z 2
- {intf(int y){return x*y;} 7
{ int g(int—>int h) { accfess : %
Intx=7; aCcess — ;

:> return h(3)+x; g] ->-
} g(f) [access| —

g(f); h 1
) X /
h(3) |access — access link set
} y 3 from closure
i for each

function call

9/28/18 20

Return Function as Result

» Language feature

— Functions that return “new” functions
— Need to maintain environment of function

= Function “created” dynamically

9/28/18

— function value is closure = (env, code)
— code not compiled dynamically (in most languages)

810C - 0I1€ ANI

21

Example: Return function with private state

Function “make counter” returns a
closure

'

{ int—>int mk_counter (int init) {
int count = init;
int counter(int inc)
{ return count +=inc;}
return counter

}
int—>int ¢ = mk_counter(1);
print ¢(2) + c(2);

} AN

How is correct value of count determined in
call c(2) ? Next slide 2

810C - 0I1€ ANI

9/28/18 22

Function Results and Closures

{int—int mk_counter (int init) { mk_c
!nt count = |.n|t;. 2CCESS
int counter(int inc) C

{ return count+=inc;} =
return counter mk_counter(1) [ACCESS ;
} Init =
int—int ¢ = mk_counter(1); count '§
print c(2) + c(2); counter =
} c(2) |access
inC

Call changes cell

value from 1 to 3 o _ _
Activation record associated with returned

function cannot be deallocated upon function
9/28/18 return 23

Classes and objects at runtime

Pointers to objects on the stack
— In “normal” activation bloks

The objects themselves are typically not stored on the
stack

— Separate location called the heap

810C - 0I1€ ANI

» Data for each object stored with the object
— E.g. x and y coordinates for a point

= Common functionality stored in shared location
— Methods, static variables

9/28/18 24

Smalltalk — Point object and class

to superclass Object

Stack \ Point object Point class
! class +| superclass /
oo X 3 template i »
point y 2 method dict |
/ y :
Z
)
=
=
new x.y —t——.| codefor | i
new =
move
\ code for
move

9/28/18 25

Smalltalk — runtime support for inheritance

- : [Template
Point object Point class cmp
: Method dictionary
L o -
o 2 :
AR IRTTD
. : ColoredPoint class Template
ColoredPoint object P
i or AT : Method dictionary
T |
2 2 .‘1;- ; "
$ -~ ;
> RS ’... E-& ;_-cv?-‘
e “zm:rﬂ .‘“"‘
b

9/28/18 26

Aside: not all scopes are equal

this.value = 42: //Global variable

var obj = {
value: 0, //Local field in object
increment: function() {
this.value++;
alert(this.value);

var innerFunction = function() { What will be shown on screen?

810C - 0I1€ ANI

alert(this.value); <

}

innerFunction(); / Function invocation

}
}

obj.increment(); / Method call

Try it out yourselves: http://jsfiddle.net/7jxw1r9v/1/

9/28/18 27

http://jsfiddle.net/7jxw1r9v/1/

How do we fix this?
this.value = 42; //Global variable
var obj = {

value: 0,
increment: function() {

this.value++: Why does this help?

var that = this;

. . , Because this function is a
var innerFunction = function() { _ closure that captures the

} alert(that.value); «that» variable

innerFunction(); /Function invocation

}
}

obj.increment(); //Method invocation

9/28/18 28

Everyone loves Javascript!

] www.tiobe.com/index.php/content/paperinfo/tpci/index.html

P rog ra m m i n g La n g u ag e) RedMonk Q316 Programming Language Rankings

The hall of fame listing all "Programming Language of the Yeal
language that has the highest rise in ratings in a year.

saL

XML :
Visual Basi i
: e

Delphi PowerShell
. 75— sembly G
Year Winner z Makefile _ e
& ColdFusion TypeScrip T
(3] . 3 Cuda F# ActionScript
2014 Y% JavaScript =) Arduino CoffeeScript
s) i ang
= . Dart
2013 & TransactSQL & [ffhmon ik
ransact- oCaml :
o é - Mathematica @Ml Emacs Lisp
Rank of top languages on GitHub.com over time 5 e
1
2 / o~ dge ABL Vala
DL TeX
3 Ruby
t
i PHP der LiveScript
Logos
E— VimL
g 2 yon BlitzBasic
&
6 L™ css
7 / Co+ Popularity Rank on GiiHub (by # of Projects)
- , . . .
s 5-emerging-programming-languages-bright-futu
9 \
Perl Objective-C Cc
Emacs Lisp VimL Shell HTML
10 ° < .

= = = | https://www.destroyallsoftware.com/talks/wat

J/£0/ 10

https://www.destroyallsoftware.com/talks/wat

But WHY all these WATs?

» JavaScript has automatic type coercion

— It will try to convert types into something that matches the
operand!

" [I+[]="

— The + operator cannot operate on arrays, so the array is coerced
to its string representation, which is a toString() of all the
elements joined by commas.

" {}+[]=0
— The first is recognized as an empty code block.

— The plus is thus unary, and [] is coerced to an empty string,
which is in turned coerced to 0.

* {}+{}=NaN
— The first is again an empty code block

— The second { } is an empty object, which is coerced to [object
Object], which is the toString() repr of objects

— Which is again not a number, or NaN

810C - 0I1€ ANI

30

More fun: scoping and blocks

Java: JavaScript:
void main() { function main() {
Integer x = 1; varx = 1;
System.out.printin(x); _console.log(x);
if (true) { if (true) { .
Integer x = 2; var x =2; :ﬂ
System.out.printin(x); \ console.log(x); =
} :
System.out.printin(x); console.log(x); §
} }
Output: «1», «2», «1» Output: «1», «2», «2»!

- JavaScript has blocks, but (traditionally) not block scope!
- Declarations are always «hoisted» to the top of the function

9/28/18 31

More fun: scoping and blocks

Java: JavaScript, explicit hoisting:
void main() {
Integer x = 1;
System.out.printin(x);
if (true) { X=1; Z
Integer x = 2; console.log(x); Z
()
System.out.printin(x); (true) { =
) X = 2; T
System.out.printin(x); \ console.log(x); ;s:
}

console.log(x);

}
Output: «1», «2», «2»!

Output: «1», «2», «1»

- JavaScript has blocks, but (traditionally) not block scope!
- Declarations are always «hoisted» to the top of the function

9/28/18 32

More fun: scoping and blocks

Java: JavaScript/EcmaScript 6+:
void main() { function main() {
Integer x = 1; letx = 1;
System.out.printin(x); console.log(x);
if (true) { if (true) {
Integer x = 2; let x = 2;
System.out.printin(x); } console.log(x);
}
System.out.printin(x); console.log(x);
} }
Output: «1», «2», «1» Output: «1», «2», «1»!

- EcmaScript 6 has blocks and block scope, if you use “let”!

9/28/18

810C - 0I1€ ANI

33

Upcoming!

= Autumn vacation study-week

»= Oblig 2 out October 5th, in October 26th

= 0O lecture part Il IIZ SERIUS ADMNIM-A; BI.TRATUR

9/28/18

