
IN
F 3110 -2018

INF3110 – Programming Languages
Runtime Organization part II

9/28/18 1

IN
F 3110 -2018

9/28/18 2

Today: Higher-Order Functions, and Objects at
runtime
§ Higher-order functions:

– Functions passed as arguments
– Functions that return functions from nested blocks
– Need to maintain environment of function

§ Simpler case
– Function passed as argument
– Need pointer to activation record �higher up� in stack

§ More complicated case
– Function returned as result of function call
– Need to keep activation record of returning function

§ Objects at runtime
– Which activation blocks do we use?

§ Fun with Javascript
– The worlds most popular(?) language!
– Heavy use of higher-order functions

IN
F 3110 -2018

Repetition from last time

9/28/18 3

IN
F 3110 -2018

9/28/18 4

Block-Structured Languages
§ Blocks are syntactical structures
§ Can be nested within each other

...;
{ int x = 2;

{
int y = 3;
x = y+2;

}
};
...

– Storage management – memory representation
§ Enter block: allocate space for variables
§ Exits block: space may be de-allocated

new variables declared in nested blocks

inner
block

outer
block

x: global variable
y: local variable

IN
F 3110 -2018

9/28/18 5

Activation record for in-line block

§ Environment pointer
– Pointer to current record on stack

§ Control link (dynamic link)
– Pointer to previous record on

stack
– Why is it called dynamic?

§ Push record on stack
– Set new control link (in new

record) to point to old env ptr
– Set env ptr to new record

§ Pop record off stack
– Follow control link of current

record to reset environment
pointer

– (No need to actively blank
memory)

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

S
tack grow

s dow
nw

ards

IN
F 3110 -2018

9/28/18 6

Some basic concepts

§ Scope

– Region of program text where declaration is visible

§ Lifetime

– Period of time when location is allocated

– Inner declaration of x hides outer one.

– Called �hole in scope�

– Lifetime of outer x includes time when inner

block is executed

– Lifetime ¹ scope

{ int x = … ;

{ int y = … ;

{ int x = … ;

…; x; …

};

…; x; …

};

};

IN
F 3110 -2018

9/28/18 7

Access to global variables

§ Two possible scoping conventions
– Static scope: refer to closest enclosing block (syntactically)

– Dynamic scope: most recent activation record on stack

§ Example

int x = 1;
function g(z) = x+z;

function f(y) =

{

int x = y+1;

return g(y*x)

};

f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12)

How do we know which x is used for expression x+z?

IN
F 3110 -2018

9/28/18 8

Activation record for static scope

§ Control link (dynamic link)
– Link to activation record of

previous (calling) block
§ Access link (static link)

– Link to activation record
corresponding to the closest
enclosing block in program
text

– Why is it called static?
§ Difference

– Control link depends on
dynamic behavior of program

– Access link depends on static
form of program text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

IN
F 3110 -2018

9/28/18 9

Simple example for a language with blocks and
functions

{
int x = 1;
int function g(z) {

return x+z
};

int function f(y) {
int x = y+1;
return g(y*x)

};

main() {
f(3);

}
}

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

control link
access link

access link
control link

main

IN
F 3110 -2018

9/28/18 10

IN
F 3110 -2018

Functions as parameters: why?

9/28/18 11

Given a Person class and a list of Persons

Can you write a function that finds all persons that
- Are female?
- Are older than 50 years?
- Like drinking beer?

IN
F 3110 -2018

Functions as parameters: why?

9/28/18 12

Given a Person class and a list of Persons

Can you write a function that finds all persons that
- Are female?
- Are older than 50 years?
- Like drinking beer?

A first attempt:

List<Person> findPersonsThatAreFemale(List<Person> persons) {
List<Person> filteredList = new List<Person>();
for(Person p in persons) {

if(p.gender == ”female”) {
filteredList.Add(p);

}
}
return filteredList;

}

IN
F 3110 -2018

Functions as parameters: why?

9/28/18 13

Given a Person class and a list of Persons

Can you write a function that finds all persons that
- Are female?
- Are older than 50 years?
- Like drinking beer?
- …

A first attempt:

List<Person> findPersonsThatAreOlderThan50(List<Person> persons) {
List<Person> filteredList = new List<Person>();
for(Person p in persons) {

if(p.age > 50) {
filteredList.Add(p);

}
}
return filteredList;

}

IN
F 3110 -2018

Why functions as parameters? – DRY!

9/28/18 14

List<Person> filterPersons(List<Person> persons, (Person à Boolean) filter) {
List<Person> filteredList = new List<Person>();
for(Person p in persons) {

if(filter(p)) {
filteredList.Add(p);

}
}
return filteredList;

}

filterPersons(persons, function(Person p) { return p.age > 50 });

filterPersons(persons, function(Person p) { return p.gender == ”female” });

Imaginary func syntax

IN
F 3110 -2018

Is this in use in languages today?

9/28/18 15

Traditional OO approach: make a class out of it!

E.g. in Java (pre v8):

Collections.sort(list, new Comparator<MyClass>() {
public int compare(MyClass a, MyClass b)
{

// compare objects here
}

});

What is going on here?
• Comparator<T> is an interface, and T is a type parameter
• This interface has one method signature, int compare(T a, T b);
• Starting from the first {, we have an anonymous class

implementing this interface

IN
F 3110 -2018

Is this in use in languages today?

9/28/18 16

• Java (v8 and up):
list.sort((a, b) -> a.isGreaterThan(b));

• C#:
myList.Where(a => a.Number > 42).OrderBy(a => a.Number)

.ThenBy(a => a.FooBar);

• Python:
Celsius = [39.2, 36.5, 37.3, 37.8]
Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)

• JavaScript (Node):
app.get('/somepath/:date', function (req, res)

res.setHeader('Content-Type', 'application/json');
fetchStuff({ date: req.params.date}, function (error, result) {

if (error) console.log(error);
res.end(result);

});
});

Functional approach:

IN
F 3110 -2018

9/28/18 17

Pass function as argument

{ int x = 4;
{ int f(int y) {return x*y;}

{ int g(int®int h) {
int x=7;
return h(3) + x;

}
g(f);

}
}

}

Formal function
parameter

Actual function parameter

There are two
declarations of x

Which one is in scope
for each usage of x?

IN
F 3110 -2018

9/28/18 18

Static Scope for Function Argument

{ int x = 4;
{ int f(int y) {return x*y;}

{ int g(int®int h) {
int x=7;
return h(3) + x;
}

g(f);
}

}
}

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set? à Next slides

IN
F 3110 -2018

9/28/18 19

Closures

§ Function value is pair closure = áenv, code ñ
§ When a function represented by a closure is called

– Allocate activation record for call (as always)
– Set the access link in the activation record using the

environment pointer from the closure

IN
F 3110 -2018

9/28/18 20

{ int x = 4;
{ int f(int y){return x*y;}

{ int g(int®int h) {
int x=7;
return h(3)+x;

}
g(f);

}
}

}

Function Argument and Closures

x 4

access link set
from closure

for each
function call

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

IN
F 3110 -2018

9/28/18 21

Return Function as Result
§ Language feature

– Functions that return �new� functions
– Need to maintain environment of function

§ Function �created� dynamically
– function value is closure = áenv, codeñ
– code not compiled dynamically (in most languages)

IN
F 3110 -2018

9/28/18 22

Example: Return function with private state

{ int®int mk_counter (int init) {
int count = init;
int counter(int inc)

{ return count += inc;}
return counter

}
int®int c = mk_counter(1);
print c(2) + c(2);

}

Function “make counter” returns a
closure

How is correct value of count determined in
call c(2) ? Next slide à

IN
F 3110 -2018

9/28/18 23

Function Results and Closures

c
access

Code for
counter

Code for
mk_counter

c(2) access
inc 2

1mk_counter(1)

count
init 1

access

counter

mk_c

Call changes cell
value from 1 to 3

3

{int®int mk_counter (int init) {
int count = init;
int counter(int inc)

{ return count+=inc;}
return counter
}

int®int c = mk_counter(1);
print c(2) + c(2);

}

Activation record associated with returned
function cannot be deallocated upon function
return

IN
F 3110 -2018

Classes and objects at runtime

9/28/18 24

§ Pointers to objects on the stack
– In “normal” activation bloks

§ The objects themselves are typically not stored on the
stack
– Separate location called the heap

§ Data for each object stored with the object
– E.g. x and y coordinates for a point

§ Common functionality stored in shared location
– Methods, static variables

IN
F 3110 -2018

9/28/18 25

Smalltalk – Point object and class

point

class
x 3
y 2

superclass
template

method dict x
y

new x:y
...

move

Point objectStack

access

Point class

code for
new

code for
move

to superclass Object
...

IN
F 3110 -2018

9/28/18 26

Smalltalk – runtime support for inheritance

IN
F 3110 -2018

Aside: not all scopes are equal

9/28/18 27

this.value = 42; //Global variable

var obj = {
value: 0, //Local field in object
increment: function() {

this.value++;
alert(this.value);

var innerFunction = function() {
alert(this.value);

}

innerFunction(); // Function invocation
}

}
obj.increment(); // Method call

Try it out yourselves: http://jsfiddle.net/7jxw1r9v/1/

What will be shown on screen?

http://jsfiddle.net/7jxw1r9v/1/

IN
F 3110 -2018

How do we fix this?

9/28/18 28

this.value = 42; //Global variable

var obj = {
value: 0,
increment: function() {

this.value++;
alert(this.value);
var that = this;

var innerFunction = function() {
alert(that.value);

}

innerFunction(); //Function invocation
}

}
obj.increment(); //Method invocation

Why does this help?

Because this function is a
closure that captures the
«that» variable

IN
F 3110 -2018

Everyone loves Javascript!

9/28/18 29

http://techbeacon.com/5-emerging-programming-languages-bright-future

https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat

IN
F 3110 -2018

9/28/18

But WHY all these WATs?
§ JavaScript has automatic type coercion

– It will try to convert types into something that matches the
operand!

§ [] + [] = ""
– The + operator cannot operate on arrays, so the array is coerced

to its string representation, which is a toString() of all the
elements joined by commas.

§ { } + [] = 0
– The first is recognized as an empty code block.
– The plus is thus unary, and [] is coerced to an empty string,

which is in turned coerced to 0.

§ { } + { } = NaN
– The first is again an empty code block
– The second { } is an empty object, which is coerced to [object

Object], which is the toString() repr of objects
– Which is again not a number, or NaN

30

IN
F 3110 -2018

More fun: scoping and blocks

9/28/18 31

JavaScript:

function main() {

var x = 1;

console.log(x);

if (true) {

var x = 2;

console.log(x);

}

console.log(x);

}

Output: «1», «2», «1» Output: «1», «2», «2»!

- JavaScript has blocks, but (traditionally) not block scope!

- Declarations are always «hoisted» to the top of the function

Java:

void main() {

Integer x = 1;

System.out.println(x);

if (true) {

Integer x = 2;

System.out.println(x);

}

System.out.println(x);

}

IN
F 3110 -2018

More fun: scoping and blocks

9/28/18 32

JavaScript, explicit hoisting:

function main() {
var x;
var x;
x = 1;
console.log(x);
if (true) {

x = 2;
console.log(x);

}
console.log(x);

}

Java:

void main() {
Integer x = 1;
System.out.println(x);
if (true) {

Integer x = 2;
System.out.println(x);

}
System.out.println(x);

}

Output: «1», «2», «1»
Output: «1», «2», «2»!

- JavaScript has blocks, but (traditionally) not block scope!
- Declarations are always «hoisted» to the top of the function

IN
F 3110 -2018

More fun: scoping and blocks

9/28/18 33

JavaScript/EcmaScript 6+:

function main() {
let x = 1;
console.log(x);
if (true) {

let x = 2;
console.log(x);

}
console.log(x);

}

Output: «1», «2», «1» Output: «1», «2», «1»!

- EcmaScript 6 has blocks and block scope, if you use ”let”!

Java:

void main() {
Integer x = 1;
System.out.println(x);
if (true) {

Integer x = 2;
System.out.println(x);

}
System.out.println(x);

}

IN
F 3110 -2018

Upcoming!

§ Autumn vacation study-week

§ Oblig 2 out October 5th, in October 26th

§ OO lecture part II

9/28/18 34

