10/15/2018

INF3110 — Programming Languages
Object Orientation and Types, part |

Eyvind W. Axelsen
eyvinda@ifi.uio.no | @eyvindwa E2
http://eyvinda.at.ifi.uio.no

Slides adapted from previous years’ slides
made by Birger Mgller-Pedersen

birger@ifi.uio.no

8T0¢ — OTTE ANl

=

Object Orientation and Types

Lecture |

» From predefined (simple) and
user-defined (composite) types

— via

= Abstract data types
— to

= C(Classes

— Type compatibility
— Subtyping <> subclassing
— Class compatibility

— Covariance/contravariance

» Types of parameters of
redefined methods

10/15/2018

Lecture Il - Today

= Type systems (very briefly!)
= Polymorphism
— Generics
= "Advanced” 00 concepts
— Specialization of behavior?

— Multiple inheritance -
alternatives

— Inner classes

= Mandatory exercise Il out
now!

— Deadline October 26th

Z
T
w
[
[N
(@)
I
N
(@)
(I
Qo

Repetition

Remember: syntax (program text) and

semantics (meaning) are two separate things.

Types and type systems help to ascribe
meaning to programs:

= \WWhat does "Hello" + " World" mean?

= Which operation is called when you write
System.out.println ("INF3110")?

= What does the concept of a Student entail?

10/15/2018

Z
T
w
[
[N
(@)
I
N
(@)
(I
Qo

Repetition - What is a type?

= A set of values that have a set of operations in common
— 32 bit integers, and the arithmetic operations on them

— Instances of a Person class, and the methods that operate on
them

* How is a type identified?
— By its name (e.g. Int32, Person, Stack): nominal type checking
— By its structure (fields, operations): structural type checking

= Does this cover everything a type might be? No.

— Alternative definition of “type”: A piece of the program to which
the type system is able to assign a label.

— (but don’t worry too much about this now)

8T0¢ — OTTE ANl

10/15/2018

N

Repetition - Classification of types

= Predefined, simple types (not built from other types)
— boolean, integer, real, ...
— pointers, pointers to procedures
— string
» User-defined simple types
— enumerations, e.g. enum WeekDay { Mon, Tue, Wed, .. }
* Predefined composite types
— Arrays, lists/collections (in some languages)
= User-defined, composite types
— Records/structs, unions, abstract data types, classes

= Evolution from simple types, via predefined composite types to user-
defined types that reflect parts of the application domain.

8T0¢ — OTTE ANl

10/15/2018

(&)

What is a type system?

= One possible definition

— “A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

8T0¢ — OTTE ANl

What is a type system?

= One possible definition

— “A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

— We are interested in type systems in relation to programs and
programming languages, and not other kinds of type systems

= The idea of type systems (or type theory) predates programming languages,
and type theory has other applications as well

8T0¢ — OTTE ANl

What is a type system?

= One possible definition

— “A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

— The type system deals with syntactic phrases, or terms, in the
language, and assigns labels (types) to them.

= This applies to static type systems

= Dynamic type systems, on the other hand, label and keep track of
data at runtime.

8T0¢ — OTTE ANl

What is a type system?

= One possible definition

— “A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

— The goal of the type system is to prove the absence of certain
undesirable behaviors
» There are hard limits to what kind of undesirable behaviors a type
system can prove things about, e.g. (non)termination
— “The fundamental purpose of a type system is to prevent the
occurrence of execution errors during the running of a
program” [Cardelli, 2004]

» But what constitutes an execution error? ArraylndexOutOfBounds?
NullReferenceException?

8T0¢ — OTTE ANl

What is a type system?

= One possible definition

— “A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” [Pierce, 2002]

— In order to attain its goal, the type system should preferably be
computationally tractable
= Tractable = polynominal time, with regard to length of the program
= |n practice, the degree of the polynominal should not be too high

8T0¢ — OTTE ANl

10

Main categories for programming language
type systems

= Untyped
— There are no types (e.g. everything is just a bit pattern)
— Or, if you will, everything has the same single type

= Statically typed
— Types checking is a syntactic process at compile-time
— Rejects programs that do not type check before they can run

= Dynamically typed (or: dynamically checked)

— Types are checked at runtime
= By a runtime system, or
= By code inserted by a compiler

= Categories are not mutually exclusive

— Most “real-world” languages are somewhere in between, with
elements from more than one category

— There is a tension between safety and expressivity that must be
resolved by the language/type system designer

8T0¢ — OTTE ANl

11

Static type systems

» Types are assigned to syntactical elements of a program (prior to running it)

— Types annotations can be specified explicitly in the source code by the programmer,
“‘“ALGOL-style”, as in Java, C++, etc

— Or they can be inferred by the compiler, as in ML, Haskell, etc, Hindley-Milner style

= An AST (abstract syntax tree) is typically created from the source code using the
language’s grammar

_ ublic class C |
— Some of the nodes in the P {
tree will be declarations of member ~name —modifier
types, or type annotations - m
name body formal return
« Uses the language’s _ 1 ~
: guag : int m(inti) { A0 'm' [block | [param Je-... <
semantics to establish Ve T~C
relationships between member type name

déc\aration ~
expressions and types m(i); @ B

* Thus type checking } } name arg_
declaration
the program ¥ rn TR
» Checks structural
or nominal conformance
according to language 12

semantics Image from JTransformer

Static type systems [cont.]

Static type systems are always conservative

— They cannot (in general) prove the presence of errors, only the absence of certain
bad behaviors

— They are therefore bound to potentially reject “correct” programs

if(< complex runtime condition that always evaluates to true >)
< valid code >

else
< type error >

Mainstream languages typically concede to tradeoffs between flexibility and type
safety

— E.g. covariant array conversions, null-references, runtime contract checking
— [Escape hatches to circumvent the type system:

= Unchecked constructs in Ada
= ynsafe { .. } INnC#
" Obj.magic in Ocaml

— “license to Kill [the type system]”— anonymous
stackoverflow.com user

» Foreign Function Interfaces in most languages, e.g. ML, JavaScript,
Python, Java, etc

8T0¢ — OTTE ANl

13

Dynamically typed languages

= Type checks at runtime
— As long as the receiver supports the requested operation,
everything is fine
— Errors due to type-incorrect operations will be caught* at runtime
= *if the language is safe, otherwise, anything could happen

= Never need to reject a correct program
— But may indeed end up running many faulty ones

— Extensive testing/TDD may find the errors that a compiler would
otherwise have found

= A test suite can find an upper bound on correctness, while (static)
type systems find a lower bound

8T0¢ — OTTE ANl

14

Dynamically typed languages [cont.]

» Freedom of expression where static type system cannot (at present?) correctly type the
program

— Can have meta-object protocols with sophisticated behavior
= Responding to method calls or not depending on runtime environment, e.g.:

def methodMissing (name, args) {
if (name.startsWith (“get”) && App.User.IsAuthorized())
return OtherClass.metaClass.Invoke (name, args);
else
thow new MessageNotUnderstoodException();

}

— Effortlessly create proxies at runtime

— Create and cache new methods from business rules defined by users, e.g. in an internal
DSL

— Etc

» Classes and objects can be adapted at runtime
— Add or remove methods or fields, swap out classes, etc.
— Used a great deal by e.g. Flickr, Facebook and Gmail [Vitek 2009]

8T0¢ — OTTE ANl

15

Mark Mannasse: “The fundamental problem addressed by a type
theory [aka type system] is to ensure that programs have meaning.

The fundamental problem caused by a type theory is that
meaningful programs may not have meanings ascribed to
them.

The quest for richer type systems results from this tension.”
[as quoted by Pierce 2002, p 208]

8T0¢ — OTTE ANl

16

Words of wisdom?

“Static typing is great because it keeps
you out of trouble.

Dynamic typing Is great because it gets
out of your way”

— Zack Grossbart (author, blogger,)

=z
L
w
[
[HEN
o
I
N
o
[y
00)

17

Polymorphism — a single interface usable for
Instances of different types

= Ad hoc polymorphism: functions/methods with the same name that
can be applied to different parameter types and arities

— Typically called overloading

= Parametric polymorphism: "when the type of a value contains one or
more type variables, so that the value may adopt any type that
results from substituting those variables with concrete types”
[https://wiki.haskell.org/Polymorphism].

— In OOP communities, this is typically called generics.
— In FP communities, this is typically called just polymorphism.

= Subtype polymorphism (subtyping): an instance of a subtype can be
substituted where a supertype is expected

— In OOP communities, this is often simply referred to
as polymorphism.

10/15/2018

Z
M
w
[
[N
(@)
I
N
(@)
(I
Qo

18

Generics/parametric polymorphism

= Type constructors, of types of types

E.g. List<T> can be used to construct List<String>,
List<Person>, efc.

» Different languages offer different degrees of expressiveness

10/15/2018

What can be said about T?

Can we constrain what it can be?

Can we be sure that whatever is in our List<String> Is really
only strings?

What about subtype hierarchies?

To which extent is the generic type type safe?

Can the generic type be analyzed on its own, independently of
any use-cases?

8T0¢ — OTTE ANl

=

9

Constraining type parameters C++ templates provide no

_ _ support for constraints on
= C++ polymorphic sort function template parameters

template <typename T>
volid sort (int count, T arr[]) {
for (int 1=0; i<count-1; i++)
for (int Jj=i+1; j<count-1; j++)
if (arr[j] < arr[i])

swap (arr[i], arr(jl);

= What parts of the implementation depend on what property of T?
Usage, meaning and implementation of <

8T0¢ — OTTE ANl

10/15/2018

N

0

Java lists without and with generics

// create new list

List myIntList = new LinkedList();
// add an integer to the list
myIntList.add (new Integer (0));

// take an integer out from the list

Integer x = (Integer)myIntList.iterator () .next/()

// the same, this time with generic list

List<Integer> myIntlList = new LinkedLilist<Integer>();

myIntList.add (new Integer (0));
Integer x = myIntList.iterator () .next()

10/15/2018

8T0¢ — OTTE ANl

N

1

Generics and subtyping

= String subtype of Object >< List<String> subtype of List<Object> ?

List<String> 1ls = new ArrayList<String>();
List<Object> lo = 1s;

Object

lo.add (new Object()); ?
String s = 1 .get(O);\ attempts to assign |
compile-time an Object to a String Sting

error

= Integer subtype of Number >)/\ List<Integer> subtype of List<Number> ?

List<Integer> ints = Arrays.asList(1l,2); Number >
List<Number> nums = ints; o
nums.add (3.14) ; \ % 5
| | l'\)

o

[IEN

oo

com p| Ie'ti me Integer Double
error

10/15/2018

N

2

But look out! Arrays and subtyping

String subtype of Object = String[| subtype of Object[|?

String[] myStrings = new String [10];
myStrings[0] = "Hello";
myStrings[l] = "World!";

Object[] myObjects = myStrings; // 2?7
myObjects[3] = new Object(); // '!!

Try it out in Java and/or C#!

10/15/2018

8T0¢ — OTTE ANl

N

3

Unbounded polymorhpism - Wildcards - |

Goal: Write code to print the elements of any collection:

vold printCollection(Collection c) {

Iterator 1 = c.iterator();
for (k = 0; k < c.size(); k++)
System.out.println(i.next());

volid printCollection (Collection<Object> c) {
for (Object e : c)
System.out.println(e);

void printCollection(Collection<?> c) {

for (Object e : c)
System.out.println(e);

10/15/2018

Collection<any type>
IS not a subtype of
Collection<Obiject>

Collection<any type>
IS a subtype of
Collection<?>

24

Bounded polymorhpism - Wildcards - |l

public abstract class Shape {
public abstract void draw(Canvas c);

}

public class Circle extends Shape {
private int x, vy, radius;
public void draw(Canvas c¢) { ... }

}

public class Rectangle extends Shape {
private int x, vy, width, height;
public void draw(Canvas c) { ... }

}

public class Canvas {
public void draw(Shape s) { s.draw(this);}
}

Write code to draw a list of any kind of shape -

10/15/2018

8T0¢ — OTTE ANl

N

5

Bounded polymorhpism - Wildcards - |l

// in class Canvas:
public void drawAll (List<Shape> shapes) {

for (Shape s: shapes) \ Cannot draw e.g. a
s.draw (this); list of rectangles or

J circles

public voild drawAll (List<? extends Shape> shapes) {
for (Shape s: shapes)
s.draw (this) ;

» List<S>subtype of List<? extends Shape > forevery S being
a subtype of the (concrete) type Shape

» List<S>subtype of List<? extends T > forevery S being a
subtype of (the generic parameter) T

8T0¢ — OTTE ANl

N

10/15/2018 6

Generic methods

static void fromArrayToColl (Object[] a, Collection<?> c) {
for (Object o: a)
c.add (o) ; // compile time error — why?

static <T> void fromArrayToColl (T[] a, Collection<T> c) {
for (T o: a)
c.add(o); // works — why?

8T0¢ — OTTE ANl

10/15/2018

N

7

Generic methods - Copy collections

class Collections {
public static <T> void copy (
List<T> dest, List<? extends T> src) {
for (T s : src)
dest.add(s) ;

-—— 0Or:

class Collections {
public static <T, S extends T> void copy (
List<T> dest, List<S> src) {
for (S s : src)
dest.add(s) ;

Generic parameters — write to sinks

interface Sink<T> {
flush(T t); // flush might for instance write stuff to disk

// writeAll writes everything in coll to disk using sink.flush
public static <T> T writeAll (Collection<T> coll, Sink<T> snk) {

T last;

for (T t : coll) {
last = t;
snk.flush (last);

}

return last; // return last element wriltten

}

Sink<Object> s = ...; // a sink that can writ¥e any object

Collection<String> ¢cs = ... ; // can
String str = writeAll(cs, s); //?

lllegal call

Sink<Object> s;
Collection<String> cs;

public static <T> T writeAll (
Collection<? extends T>, Sink<T>) {

call ok, but
wrong return

String str = writeAll(cs, s); //?

type:
T which is
Object

public static <T> T writeAll (
Collection<T> coll, Sink<? super T> snk) {

String str = writeAll(cs, s); //? Yes: returns T

8T0¢ — OTTE ANl

which is now
String

10/15/2018

w

0

Subtyping of behaviour specification?

Reservation
date
customer
print() Is the behavior of print in the
subclasses a behavioral subtype of that
2 Zﬁu In the superclass?
FlightReservation TrainReservation
flight train
seat waggon —
seat =
print() =
print() T
o
o

10/15/2018 31

'Subtyping’ for behaviour — the super style

class Reservation {
date . . . ;
customer . . . ;
void print () {
// print date and Customer
}
}

class FlightReservation extends Reservation {
flight . . .;
seat . . .7
volid print {
super.print () ;
// print Flight and Seat

We depend on the
developer of
FlightReservation to
do the "right thing”

10/15/2018

Z
L
w
|
|
o
I
N
o
|
(o]

32

Subtyping for behaviour —the inner style

= Does the inner style give

class Reservation | behavioral compatibility?

date . . . ; customer . . . ;
void print () {

// print Date and Customer = No,sﬂHonh/

inner; structural compatibility,
J but structure in terms of

} sequence of statements,

class FlightReservation In ad(tj)l'[IOnftO S'Qna]’fure
extends Reservation { (number of types o

flight . . .; seat . . .; parameters)!

void print extended ({
// print flight and seat
inner;

8T0¢ — OTTE ANl

10/15/2018

w

3

_ A double-ended queue
Su btyp Ing (dequeue, often
abbreviated to deque,
— d deck) is an
Dequeue pronounce
. abstract data type that
Su b C l assin g 7 ? insert_front() generalizes a queue, for
insert_rear() which elements can be
Queue delete front() added to or removed
. — from either the front
Insert() delete_rear() (head) or back (tail)
delete() Z}
Stack
push() Queue Stack
pop() insert_front() push():: insert_front
delete rear() pop():: delete_front
Dequeue
. Z
insert_front() Dequeue d; Stack s; Element e; o
insert_rear() vold f (Dequeue dp, Element ep) { E
delete front() dp.insert front(ep); dp.insert rear (ep) [
delete _rear() } =

10/15/2018 f(s, e) 34

The opposite any better?

Queue

Stack

insert_front()
delete_rear()

push()
pop()

10/15/2018

1

T

Dequeue

insert_front():: push

insert_rear()
delete_front():: pop
delete rear()

Dequeue can take
the place of both a
Queue and a Stack
(via different
references).

A context where it is
used as a stack
cannot be sure that it
behaves like a stack.

=z
L
w
[
[HEN
(@)
I
N
(@)
[y
Qo

35

Inheritance and extension

We want to extend
this with new

Figure figures, and new
String descr; properties for
figures
Circle Rectangle Ellipse
fl _ float width; float a; @
oatr; . .
float height; float b;
FigureX?
-area .
_color @ new Circle().color= ...; @

8T0¢ — OTTE ANl

10/15/2018

w

6

Multiple inheritance

Solves the problem (kind of) but:

- Complex hierarchy for simple
Figure problem

Sl e - One or two description variables

from figure? («Diamond problems)

Circle Rectangle - Difficult with overrides

float width; - Runtime complexity
float height;

float r;

FigureX

-area
-color

CircleX RectangleX

Z
T
w
[
[N
(@)
I
N
(@)
(I
Qo

10/15/2018 37

Virtual classes

Solves the problem (kind of)
Figure but:
g Elser - Complex hierarchy for
simple problem?
- Runtime complexity
- Not type safe (typically)

Figures

Circle Rectangle
float width;
float height;

float r;

1

Fi X :
Gures FigureX

-area
-color

CircleX RectangleX

Z
L
w
[
[N
(@)
I
N
(@)
(I
Qo

10/15/2018 38

Composition / Encapsulation?

class Apartment {
Kitchen theKitchen = new Kitchen() ;
Bathroom theBathroom = new Bathroom() ;
Bedroom theBedroom = new Bedroom ()
FamilyRoom theFamilyRoom =

new FamilyRoom (),

Where are Kitchen,

Bathroom, Bedroom,
Address theAddress = new Address|() FamiliyRoom definec

Person Owner;

Do they belong to the
apartment?

myApartment . theKitchen.paint () ;

myApartment . theKitchen = otherAppartment.theKitchen; // ?

[
w
[
[N
(@)
I
N
(@)
(I
Qo

10/15/2018 40

Inner classes - locally defined classes

class Apartment {
Height height;
Kitchen theKitchen = new Kitchen() ;

// define inner class
// reuse the height of this specific Apartment:
class ApartmentBathroom extends Bathroom {... height

// then use it
// can’t be mixed with another Apartment’s rooms:
ApartmentBathroom Bathroom 1 = new ApartmentBathroom

ApartmentBathroom Bathroom 2 = new ApartmentBathroom

Bedroom theBedroom = new Bedroom () ;

FamilyRoom theFamilyRoom = new FamilyRoom () ;

Person Owner;

Address theAddress = new Address ()

.}

()
()

Virtual classes

(made-up syntax ahead)

class Apartment {

virtual class ApartmentBathroom < Bathroom
i

class SpecialApartment extends Apartment {
class ApartmentBathroom:: PinkBathroom

// PinkBathroom defined somewhere else

class MoreSpecialApartment extends Apartment

class ApartmentBathroom:: PinkBathroom {...}

8T0¢ — OTTE ANl

N

10/15/2018 2

Singular objects (singleton class)
- anonymous classes

Button btn = new Button();
btn.setText ("Say 'Hello World'");
btn.setOnAction (
new EventHandler<ActionEvent> () {
public void handle (ActionEvent event) ({

System.out.println("Hello World!"); .t ANONymMous
} class

8T0¢ — OTTE ANl

10/15/2018

N

3

interface HelloWorld {
public void greet();
public void greetSomeone (String someone) ;

HelloWorld norwegianGreeting = new
HelloWorld () {

String name = "Verden'";

public void greet () {
greetSomeone ("Verden') ;

}

public void greetSomeone (String someone)
name = someone;
System.out.println("Hallo " + name);

s

10/15/2018

{

_| Anonymous

class

8T0¢ — OTTE

44

public static void printPersons (
List<Person> roster, CheckPerson tester) {

for (Person p : roster) {
1f (tester.test(p)) {
p.printPerson () ; interface CheckPerson {
} boolean test (Person p);
} }
} Functional interface
printPersons (
roster,
new CheckPerson () { -
public boolean test (Person p) {
return p.getGender () == Person.Sex.MALE
&& p.getAge() >= 18 Anonymous

&& p.getAge () <= 25; = | class

) ; _J

10/15/2018

45

public static void printPersons (
List<Person> roster, CheckPerson tester) {

for (Person p : roster) {
1f (tester.test(p)) {
p.printPerson () ; interface CheckPerson {
} boolean test (Person p);
} }
} Functional interface
printPersons (
roster,
(Person p) -> .
p.getGender () == Person.Sex.MALE Anonymous

&& p.getAge() >= 18 = | function
&& p.getAge() <= 25

8T0¢ — OTTE ANl

10/15/2018

N

6

Coming up!

= Daniel, with a couple of more ML-lectures
= Mandatory 2 out now

