
1 Functional Programming and ML [part 3]

In part based on slides from Gerardo Schneider, which where in turn based on
John C. Mitchell’s

1.1 Types and Type system (revisited)

1.1.1 Type

• Documentation
• Prevent errors
• Support optimization

1.1.2 Subtyping

• Substitutivity, aka the Liskov substitution principle
• No subtyping in ML

1.1.3 Type safety

• Progress and preservation
– preservation is sometimes called subject reduction

• Soundness and Completeness
• Static versus dynamic/runtime checks

1.2 Polymorphism

Question. What does poly mean? And morphous?

What does polymorphism mean?

Three main flavors of polymorphism

1. Parametric polymorphism
2. Ad hoc polymorphism
3. Subtype polymorphism

We will look at each one of them next

1. Parametric polymorphism

• Single function may be given many types
• The type expression involves type variables

1



- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

Question. Can you think of other (parametrically) polymorphic functions?

2. Ad hoc polymorphism

Also known as function overloading

• When a function has more than one definition
• Each definition having a different signature

– different types for its arguments
• Overloading is resolved at compile time,

– based on the function usage and context

- 3 + 1;
- 3.14 + 1.0;

3. Subtype polymorphism

• We write S <: T to express that S is a subtype of T
• If S <: T, then any expression of type S can be safely used in a context

where a expression of type T is expected

function max (x as Number, y as Number) is
...

end

If both Int and Double are subtypes of Number, then max can be applied to
either subtype.

The example above is not ML syntax. ML does not have subtyping.

1.2.1 Parametric Polymorphism: ML vs. C++

• C++ function template
– Declaration gives type of function arguments and result
– Place declaration inside a template to define type variables
– Function application: type checker does instantiation automatically

• ML polymorphic function
– Declaration has no type information
– Type inference algorithm

∗ Produce type expression with variables
∗ Substitute for variables as needed

Implementation

• C++

2



– Templates are instantiated at program link time
– Swap template may be stored in one file and the program(s) calling

swap in another
– Linker duplicates code for each type of use

• ML
– Swap is compiled into one function (no need for different copies!)
– Type-checker determines how function can be used

Comparison

• C++: more effort at link time and bigger code
• ML: runs more slowly, but gives smaller code and avoids linking problems
• Global link time errors can be more difficult to find out than local compile

errors

1.3 Type checking × Type inference

Type checking

• Check whether the programmer is mixing types in an unsafe way

Type inference

• Determines the type of an expression based on its sub-expressions
• Allows for type declarations to omitted

1.4 Type inference

• Type inference naturally leads to polymorphism
• Inference uses type variables and some of these might not be resolved

Question. What are the requirements on the argument passed to f1? How
about f2?

int f1(int x) { return x+1; };

f2(x) { return x+1; };

f1 takes an integer and returns an integer. On the other hand, it is safe to
apply f2 to any datatype that supports the + operator. In that sense, f2 is more
general.

Example
fun f(g,h) = g(h(0));

h must have the type: int→ a because 0 is of type int

3



this implies that g must have the type: a→ b

Then f must have the type: (a→ b) ∗ (int→ a)→ b

1.4.1 Different flavors of parametric polymorphism

System F

• a powerful parametrically polymorphic type system,
• however, type inference is not decidable [Wells’94]
• recently gaining popularity in practice because

– limitations of HM have become apparent
– extensions of System F address initial drawbacks

Hindley-Milner (HM) type system

• a restriction on System F
• type inference is decidable
• implemented in ML

1.4.2 Hindley-Milner

1958 Type inference algorithm given by H.B. Curry and Robert Feys for the
typed lambda calculus

1969 Roger Hindley extended the algorithm and proved that it gives the most
general type

1978 Robin Milner -independently of Hindley- provided an equivalent algorithm
(for ML)

1985 Luis Damas proved its completeness and extended it with polymorphism

1.4.3 Type inference algorithm

1. Assign types to leaves of syntax tree
2. Generate constraints as we go up the tree
3. Solve constraints by unification

Assuming that there exists a function plus declared as follows:
- fun plus x y = x + y;

Let’s look at how type inference works on the function f below:
- fun f x = ((plus 2) x);

4



f(x)

(plus 2) x

xplus 2

2plus

x

Starting at the leaves:

• Assign a type, say T1 to x
• plus has two possible types: int→ int→ int and real→ real→ real
• 2 has type int

Propagate type information up the tree, resolving conflicts:

• From the two possible types of plus and the type of 2, we infer the type
of plus 2 as int→ int→ int

• From the type of plus 2 and x we infer that x as int, in other words:
T1 7→ int

We get to the root, at which point we infer that f has type int→ int

Note that the Mitchell book (Concepts in programming languages) draws the
picture a bit different. They frame the problem in term of lambda-calculus. In
lambda calculus, there is function abstraction and function application. Abstrac-
tion sets up a function, and application calls it with arguments.

Let e stand for the expression corresponding to the body of the function, meaning
((plus 2) x). In lambda-calculus, the declaration fun f x = e is written as
λx.e.

The expression plus 2 means the application of the function plus to argument
2. And the expression (plus 2) 5 means the application of the function (plus
2) to the argument 5.

In the book, the internal nodes of the “tree” are either abstractions (λ) nodes or
application (@) nodes. To make it easier to refer to the different applications in
the graph, I’ve labeled with a subscript as in @i.

λ

@1

x@2

2plus

x

5



This makes application and abstraction obvious. In the case of application,
consider the internal @ node which has plus and 2 as children. This represents
the application of the function on the left-hand side (plus) to the argument 2 on
the right-hand side. Every application node is of the same form: left-hand side
is a function being applied to the argument on the right-hand side. Function
abstraction, the λ nodes, have the parameter (variable) name on the left-hand
size and the function body on the right-hand side. For example, the root of the
previous tree has a λ node with x in the LHS and the function body in the RHS.
To make it obvious that the x on the LHS is the same x as the one used in the
function body, the book draws an edge between them. Thus, technically, the
book does not draw a tree, but a more general graph instead.

The typing rule for @ node is: the LHS is a function, thus it has type Ta → Tb.
The RHS is the argument to the function, thus it must have type Ta.

The typing rule for λ nodes is: If the argument of the function (which is the
LHS of the λ node) has type Ta and the body of the function has type Tb, then
the λ node has type Ta → Tb.

Starting from the leaves plus and 2, we know plus has type int -> int ->
int and 2 has type int. We then go up from these leaves and applying the
typing rule for @ next. Since the LHS of an @ node must be a function, we know
that the LHS must have type Ta → Tb where Ta must be the type of the RHS
(the argument). In this case then Ta is int and Tb must be int -> int.

In the previous paragraph we concluded that int -> int is the type resulting
from the application which has plus and 2 as leaves. Thus, the @2 node has
type int -> int. The parent to @2 is also an application. The application @1
applies a function of type int -> int (the type of @2) to an argument x. At
this point, we can infer that x must have type int, and that the type of the
application @1 is also int.

Finally, since we inferred that x has type int and @1 has type int, now we can
use lambda’s typing rule to infer that the type of the λ node is int -> int.

1.4.3.1 Unification

x→ int bool→ y

6



σ(t1) = x 7→ bool σ(t2) = y 7→ int

Algorithm terminates and finds the most general unifier (if there exists one)

t1 = x→ int t2 = y → z

σ(t1) = x 7→ y σ(t2) = z 7→ int

σ′(t1) = y 7→ x σ′(t2) = z 7→ int

The most general unifier is unique up to renaming: σ ∼= σ′

Question.

• What happens when trying to unify t1 and t2 below?
• What situation can lead to this?
• What does it mean for a programmer?

t1 = x→ int t2 = y → bool

The terms t1 and t2 above cannot be unified. In other words, there does not
exist a substitution σ such that σ(t1) = σ(t2). This situation happens when a
program is not properly typed. It means there is a typing error in the program.
The compiler then generates an error message.

Unification has applications besides type inference, for example in logic program-
ming, as we will see with Prolog

7



1.4.3.2 Type inference, conclusion

• Eliminates or reduces the need for variable type declarations
• Finds the most general type by solving constraints via unification
• Leads to a flavor of parametric polymorphism

- fun id x = x;
val id = fn : 'a -> 'a

Question. How would you implement id in C++?

The purpose of the question is to show that parametric polymorphism can be
a powerful part of a language. The identity function is so easily implemented
in ML, fun id x = x;, but it is an issue for C. You could try enumerating the
different types, and using function overloading like this:
char id(char x){ return x; }
int id(int x){ return x; }
float id(float x){ return x; }
// ...

The problem is, you cannot anticipate all types, specially given enumerated types
and derived types: we can always create a type that is not already captured by
the overloaded id function.

Another alternative is to threat x as a pointer, and return the address:
void* id(void* x){ return x; }

The problem here is that we lose type information by running something through
id. We must convert something of type T to void* and we get back a void*;
we lost the type information T associated with that something.

Again, parametric polymorphism is something powerful and not easily replicated
without language support.

1.5 Type equality

• How to determine whether two types are equal
• Nominal × Structural type system

class Foo {
method(input: string): number { ... }

}

class Bar {
method(input: string): number { ... }

}

8



let foo: Foo = new Bar(); // Error OR Okay ?

In a nominal type system, the assignment of Bar object to foo generates an
error because Foo and Bar are different names. In a structural type system, the
assignment is okay because Foo and Bar have same method signatures (i.e. the
same structure).

https://medium.com/@thejameskyle/type-systems-structural-vs-nominal-
typing-explained-56511dd969f4

Note to confuse:
equality on types × equality on expressions

Equality on types
let foo: Foo = new Bar(); // Error OR Okay ?

Question. Are nat and n equal? Nominally equal? Structurally equal?

The question of whether nat and n are equal depends on whether the language
is nominally or structurally typed.

Equality on expressions
1 = 1;
1 = 2;

Types whose expressions can be checked for equality are called equality types.

In other words, if e1 and e2 are expressions of an equality type, then we can
check whether e1 = e2.

In (S)ML we have:

Equality types Depends Not equality types
int tuples reals
bool records functions
char data-types abstract data types
string lists

Tuples, records, data-types, and lists are equality types if their subparts are
equality types.

Question. Functions are generally not considered equality types. Why? What
is difficult in comparing two functions?

Functions are sometimes considered computational types. It is easy to com-
pare whether two functions are syntactically the same. Comparing functions
semantically is much harder. In general, semantical comparison of functions
impossible.

9


	Functional Programming and ML [part 3]
	Types and Type system (revisited)
	Type
	Subtyping
	Type safety

	Polymorphism
	Parametric Polymorphism: ML vs. C++

	Type checking \times Type inference
	Type inference
	Different flavors of parametric polymorphism
	Hindley-Milner
	Type inference algorithm

	Type equality


