
Functional Programming and ML
[part 3]

In part based on slides from Gerardo Schneider, which where
in turn based on John C. Mitchell’s
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Types and Type system (revisited)

Type

• Documentation
• Prevent errors
• Support optimization

Subtyping

• Substitutivity, aka the Liskov substitution principle
• No subtyping in ML

2



Type safety

• Progress and preservation
– preservation is sometimes called subject reduction

• Soundness and Completeness
• Static versus dynamic/runtime checks
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Polymorphism

Question. What does poly mean? And morphous?

What does polymorphism mean?
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Three main flavors of polymorphism

1. Parametric polymorphism
2. Ad hoc polymorphism
3. Subtype polymorphism
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1. Parametric polymorphism

• Single function may be given many types
• The type expression involves type variables

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

Question. Can you think of other (parametrically) poly-
morphic functions?
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2. Ad hoc polymorphism

Also known as function overloading

• When a function has more than one definition
• Each definition having a different signature

– different types for its arguments
• Overloading is resolved at compile time,

– based on the function usage and context

- 3 + 1;
- 3.14 + 1.0;
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3. Subtype polymorphism

• We write S <: T to express that S is a subtype of T
• If S <: T, then any expression of type S can be safely

used in a context where a expression of type T is
expected

function max (x as Number, y as Number) is
...

end

The example above is not ML syntax. ML does not have
subtyping.
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Type checking × Type inference

Type checking

• Check whether the programmer is mixing types in an
unsafe way

Type inference

• Determines the type of an expression based on its
sub-expressions

• Allows for type declarations to omitted
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Type inference

• Type inference naturally leads to polymorphism
• Inference uses type variables and some of these

might not be resolved

Question. What are the requirements on the argument
passed to f1? How about f2?

int f1(int x) { return x+1; };

f2(x) { return x+1; };
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Example
fun f(g,h) = g(h(0));
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Different flavors of parametric polymorphism

System F

• a powerful parametrically polymorphic type system,
• however, type inference is not decidable [Wells’94]
• recently gaining popularity in practice because

– limitations of HM have become apparent
– extensions of System F address initial drawbacks

Hindley-Milner (HM) type system

• a restriction on System F
• type inference is decidable
• implemented in ML
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Type inference algorithm

1. Assign types to leaves of syntax tree
2. Generate constraints as we go up the tree
3. Solve constraints by unification

- fun f x = ((plus 2) x);

f(x)

(plus 2) x

xplus 2

2plus

x
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Unification

x→ int bool→ y

σ(t1) = x 7→ bool σ(t2) = y 7→ int
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Algorithm terminates and finds the most general unifier
(if there exists one)

t1 = x→ int t2 = y → z
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Algorithm terminates and finds the most general unifier
(if there exists one)

t1 = x→ int t2 = y → z

σ(t1) = x 7→ y σ(t2) = z 7→ int

σ′(t1) = y 7→ x σ′(t2) = z 7→ int

The most general unifier is unique up to renaming: σ ∼= σ′
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Question.

• What happens when trying to unify t1 and t2 below?
• What situation can lead to this?
• What does it mean for a programmer?

t1 = x→ int t2 = y → bool
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Unification has applications besides type inference, for ex-
ample in logic programming, as we will see with Prolog
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Type inference, conclusion

• Eliminates or reduces the need for variable type dec-
larations

• Finds the most general type by solving constraints via
unification

• Leads to a flavor of parametric polymorphism

- fun id x = x;
val id = fn : 'a -> 'a

Question. How would you implement id in C++?
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Type equality

• How to determine whether two types are equal
• Nominal × Structural type system

class Foo {
method(input: string): number { ... }

}

class Bar {
method(input: string): number { ... }

}

let foo: Foo = new Bar(); // Error OR Okay ?

https://medium.com/@thejameskyle/type-systems-
structural-vs-nominal-typing-explained-56511dd969f4
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Note to confuse:
equality on types × equality on expressions

Equality on types
let foo: Foo = new Bar(); // Error OR Okay ?

Equality on expressions
1 = 1;
1 = 2;

Types whose expressions can be checked for equality are
called equality types.
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In (S)ML we have:

Equality types Depends Not equality types
int tuples reals
bool records functions
char data-types abstract data types
string lists

Tuples, records, data-types, and lists are equality types if
their subparts are equality types.

Question. Functions are generally not considered equality
types. Why? What is difficult in comparing two functions?
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