
Functional Programming and ML
[part 3]

In part based on slides from Gerardo Schneider, which where
in turn based on John C. Mitchell’s

1



Types and Type system (revisited)

Type

• Documentation
• Prevent errors
• Support optimization

Subtyping

• Substitutivity, aka the Liskov substitution principle
• No subtyping in ML

2



Type safety

• Progress and preservation
– preservation is sometimes called subject reduction

• Soundness and Completeness
• Static versus dynamic/runtime checks

3



Polymorphism

Question. What does poly mean? And morphous?

What does polymorphism mean?

4



Three main flavors of polymorphism

1. Parametric polymorphism
2. Ad hoc polymorphism
3. Subtype polymorphism

5



1. Parametric polymorphism

• Single function may be given many types
• The type expression involves type variables

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

Question. Can you think of other (parametrically) poly-
morphic functions?

6



2. Ad hoc polymorphism

Also known as function overloading

• When a function has more than one definition
• Each definition having a different signature

– different types for its arguments
• Overloading is resolved at compile time,

– based on the function usage and context

- 3 + 1;
- 3.14 + 1.0;

7



3. Subtype polymorphism

• We write S <: T to express that S is a subtype of T
• If S <: T, then any expression of type S can be safely

used in a context where a expression of type T is
expected

function max (x as Number, y as Number) is
...

end

The example above is not ML syntax. ML does not have
subtyping.

8



Type checking × Type inference

Type checking

• Check whether the programmer is mixing types in an
unsafe way

Type inference

• Determines the type of an expression based on its
sub-expressions

• Allows for type declarations to omitted

9



Type inference

• Type inference naturally leads to polymorphism
• Inference uses type variables and some of these

might not be resolved

Question. What are the requirements on the argument
passed to f1? How about f2?

int f1(int x) { return x+1; };

f2(x) { return x+1; };

10



Example
fun f(g,h) = g(h(0));

11



Different flavors of parametric polymorphism

System F

• a powerful parametrically polymorphic type system,
• however, type inference is not decidable [Wells’94]
• recently gaining popularity in practice because

– limitations of HM have become apparent
– extensions of System F address initial drawbacks

Hindley-Milner (HM) type system

• a restriction on System F
• type inference is decidable
• implemented in ML

12



Type inference algorithm

1. Assign types to leaves of syntax tree
2. Generate constraints as we go up the tree
3. Solve constraints by unification

- fun f x = ((plus 2) x);

f(x)

(plus 2) x

xplus 2

2plus

x

13



Unification

x→ int bool→ y

σ(t1) = x 7→ bool σ(t2) = y 7→ int

14



Algorithm terminates and finds the most general unifier
(if there exists one)

t1 = x→ int t2 = y → z

15



Algorithm terminates and finds the most general unifier
(if there exists one)

t1 = x→ int t2 = y → z

σ(t1) = x 7→ y σ(t2) = z 7→ int

σ′(t1) = y 7→ x σ′(t2) = z 7→ int

The most general unifier is unique up to renaming: σ ∼= σ′

16



Question.

• What happens when trying to unify t1 and t2 below?
• What situation can lead to this?
• What does it mean for a programmer?

t1 = x→ int t2 = y → bool

17



Unification has applications besides type inference, for ex-
ample in logic programming, as we will see with Prolog

18



Type inference, conclusion

• Eliminates or reduces the need for variable type dec-
larations

• Finds the most general type by solving constraints via
unification

• Leads to a flavor of parametric polymorphism

- fun id x = x;
val id = fn : 'a -> 'a

Question. How would you implement id in C++?

19



Type equality

• How to determine whether two types are equal
• Nominal × Structural type system

class Foo {
method(input: string): number { ... }

}

class Bar {
method(input: string): number { ... }

}

let foo: Foo = new Bar(); // Error OR Okay ?

https://medium.com/@thejameskyle/type-systems-
structural-vs-nominal-typing-explained-56511dd969f4

20



Note to confuse:
equality on types × equality on expressions

Equality on types
let foo: Foo = new Bar(); // Error OR Okay ?

Equality on expressions
1 = 1;
1 = 2;

Types whose expressions can be checked for equality are
called equality types.

21



In (S)ML we have:

Equality types Depends Not equality types
int tuples reals
bool records functions
char data-types abstract data types
string lists

Tuples, records, data-types, and lists are equality types if
their subparts are equality types.

Question. Functions are generally not considered equality
types. Why? What is difficult in comparing two functions?

22


	Functional Programming and ML [part 3]
	Types and Type system (revisited)
	Type
	Subtyping
	Type safety

	Polymorphism
	Type checking \times Type inference
	Type inference
	Different flavors of parametric polymorphism
	Type inference algorithm

	Type equality


