
Functional Programming and ML
[part 4]

In part based on slides from Gerardo Schneider, which where
in turn based on John C. Mitchell’s

1

Abstraction

1. Hide details (encapsulation)

2. Tame complexity

3. Allow for code reuse

4. Communicate relative importance of components

etc

2

Language support for abstraction can be broken down into
categories:

• Control flow abstraction
– if-then-else as opposed to goto
– exceptions
– continuations
– evaluation order

• Data abstraction
– data types, abstract data types, modules

• Syntactic abstraction
– macro systems and meta-programming features

3

Control flow abstraction

1968 Go To Statement Considered Harmful (Dijkstra)
if B then S else S` end

addr0 cmpl $0x0, B
addr1 je addr4
addr2 S
addr3 jmp addr5
addr4 S'
addr5

Similar for:
while B do S end
for B do S end

4

Exceptions

Terminate part of computation

• Jump out of a construct (as opposed to into another)
– “Wait. . . but aren’t jumps bad?”

• Pass data as part of jump
• Return to most recent site set up to handle exception

Memory management needed

• Unnecessary activation records need to be deallocated

Two main language constructs

• raise exception: throw Java, raise Python
• handle exception: catch Java, try...except Python

5

Exceptions in ML

Exceptions do not affect a function’s type signature
- fun f () = 1;
- fun g () = if false then raise Div else 1;
- fun h () = if true then raise Div else 1;

Exceptions must be declared before use

Exceptions are dynamically scoped

• Control jumps to the handler most recently established
(run-time stack)

• ML is otherwise statically scoped

Pattern matching to determine the appropriate handler
(C++/Java uses type matching)

6

Example in ML
- exception outOfBounds;
exception outOfBounds
- fun nth (n, nil) = raise outOfBounds

| nth (0, h::t) = h
| nth (n, h::t) = nth (n-1, t);

val nth = fn : int * 'a list -> 'a

- val lst = ["bob", "stuart", "kevin"];
val lst = ["bob","stuart","kevin"] : string list
- nth(0, lst);
val it = "bob" : string
- nth(3, lst);
uncaught exception outOfBounds

7

- fun safeNth(n,xs) = nth(n,xs)
handle X => "minion";

val safeNth = fn : int * string list -> string
- safeNth(3, lst);
val it = "minion" : string

8

Dynamic scoping of handlers

Exception propagates up the call stack

Who handles the exception?

• depends on runtime information

Motivation:

• Users know better how to handle errors
• Author of library function does not

9

Example: Dynamic scoping of handlers
- exception X;
- (let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

Question. What is the value of g(f)?

Question. Which handler will be used? The =>2, 4, or 6?

10

Question. What will be the final value when executing
the outer let-expression?

- val x = 6;
- (let fun f(y) = x

and g(h) = (let val x=2 in h(1) end)
in

(let val x=4 in g(f) end)
end);

11

Handlers with pattern matching
- exception Signal of int;
- fun f(x) = if x=0 then raise Signal(0)

else if x=1 then raise Signal(1)
else if x=10 then raise Signal(x-8)
else (x-2) mod 4;

f(10) handle Signal(0) => 0
| Signal(1) => 1
| Signal(x) => x;

12

Exceptions and resource allocation

- exception X;
- (let val x = ref [1,2] in (* [1,2] heap, x stack *)

let val y = ref [3,4] in (* [3,4] heap, y stack *)
... raise X (* Control to outside scope *)

end
end) (* x, y off stack

[1,2] [3,4] garbage collected *)
handle X => ...;

In Java, use the finally construct to dealloc resources

13

Typing of exceptions

Recall that:
e v v : T

e : T

What happens when exceptions occur along the way?

Question. What is the type of the expression below?
- 42 + (1 div 0 handle X => 1);

Question. What is the type of the expression below?
- 42 + ((raise Div) handle X => 1);

Note: handle X converts exception to normal termination

14

In general,

• the type of raise e is a type variable 'a
• the type of handle e => e2 is the type of e2

Question. What must be the types of e1 and e2? Why?
1 + (e1 handle X => e2)

15

Exception for efficiency

Not just for error conditions

Consider the following definition of tree
datatype tree =

leaf of int
| node of tree * tree;

leaf 10;
node (leaf 10, leaf 2);
node ((node (leaf 10, leaf 2)), leaf 5);

16

Function to multiply values of tree leaves:
- fun prod(leaf x) = x: int

| prod(node(x,y)) = prod(x) * prod(y);

- prod(node ((node (leaf 10, leaf 2)), leaf 5));

Optimized using exception:
- fun prodExep(tree) =

let exception Zero
fun p(leaf x) = if x=0 then (raise Zero) else x

| p(node (x,y)) = p(x) * p(y)
in

p(tree) handle X => 0
end;

17

Even though you can use exceptions for efficiency,

it doesn’t mean you should.

Better to use continuations!

18

Continuations

“A continuation is an abstract representation of the control
state of a computer program.”

“The continuation is a data structure that represents the
computational process at a given point in the process’s
execution;

the created data structure can be accessed by the program-
ming language, instead of being hidden in the runtime
environment.”

https://en.wikipedia.org/wiki/Continuation

19

https://en.wikipedia.org/wiki/Continuation

“A continuation is something which waits for a value in order
to perform some calculations with it.

With every intermediate value in a computation, there is a
continuation associated, which represents the future of the
computation once that value is known.

A continuation is not something, like a function, which takes
a value and returns another: it just takes a value and does
everything that follows to it, and never returns.”

http://www.madore.org/~david/computers/callcc.html

5 ∗ 3 + 2

20

http://www.madore.org/~david/computers/callcc.html

Continuations in practice

Scheme (derived-from/dialect-of Lisp): first to implement
first-class continuations

Continuations in ML

Cont module inside SMLofNJ module.

- open SMLofNJ.Cont;

- 3 + callcc (fn k => 2 + 1);
- 3 + callcc (fn k => 2 + throw k 1);

- callcc;
val it = fn : ('a cont -> 'a) -> 'a

21

Continuations

“One can think of a first-class continuation as saving the
execution state of the program.”

“It is important to note that true first-class continuations
do not save program data – unlike a process image.”

https://en.wikipedia.org/wiki/Continuation

22

https://en.wikipedia.org/wiki/Continuation

Revisiting prod

- fun prodExep(tree) =
let exception Zero

fun p(leaf x) = if x=0 then (raise Zero) else x
| p(node (x,y)) = p(x) * p(y)

in
p(tree) handle X => 0

end;

- fun prodCC(tree) =
callcc (fn k =>

let fun p(leaf x) = if x=0 then (throw k 0) else x
| p(node (x,y)) = p(x) * p(y)

in p(tree) end);

23

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next
- fun plus x y = x + y;
val plus = fn : int -> int -> int

- plus 2 5;
val it = 7 : int

24

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next
- fun plusOt x y k = let val v = x + y

in v end;
val plusOt = fn : int -> int -> 'a -> int

- plusOt 2 5 ();
val it = 7 : int

25

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next
- fun pluscc x y k : int = let val v = x + y

in throw k v end;
val pluscc = fn : int -> int -> int cont -> int

- callcc(pluscc 2 5);
val it = 7 : int

26

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next
- fun pluscc x y k : int = let val v = x + y

in throw k v end;
val pluscc = fn : int -> int -> int cont -> int

- callcc(pluscc 2 5);
val it = 7 : int

Question. How does the expression reduce to 7?

27

Continuation-Passing Style (CPS)

Programs can be automatically transformed CPS

Functional and logic compilers often use CPS as an inter-
mediate representation (IR)

• Compilers for imperative langs often use static single
assignment form (SSA)

• SSA is equivalent to a subset of CPS

28

Continuations, conclusion

Continuations are a powerful construct;

they can be used to implement other control mechanisms

such as exceptions, generators, coroutines, and so on.

Continuations have been used in practice;

for example, to implement web servers.

However, continuation are often not well understood;

they can add complexity;

some call it “the go-to of functional programming.”

29

Evaluation order

Eager/strict evaluation: Arguments are evaluated be-
fore function is called

Call-by-value
Applicative-Order Evaluation
Ex: C, ML, etc

Non eager: Arguments are not evaluated unless they are
used during the evaluation of the function body

Call-by-name Call-by-need
Normal order reduction Lazy evaluation
Ex: ALGOL 60 Ex: Haskell

30

Example: sq(3+4)

Eager (3 steps)
sq(3+4) ~> sq(7) ~> 7*7 ~> 49

Lazy (4 steps)
sq(3+4) ~> (3+4)*(3+4) ~> 7*(3+4) ~> 7*7 ~> 49

31

Example: fst(sq(4), sq(2))

32

Example: fst(sq(4), sq(2))

Eager (5 steps)
fst(sq(4), sq(2))

~> fst(4*4,sq(2)) ~> fst(16,sq(2))
~> fst(16,2*2) ~> fst(16,4) ~> 16

Lazy (3 steps)
fst(sq(4), sq(2))

~> sq(4) ~> 4*4 ~> 16

33

Example: fst(sq(4), diverge)

34

Question. Why not always use “call-by-need”?

35

Question. Why not always use “call-by-need”?

From a language design perspective, lazy evaluation is very
hard to get right in the presence of side effects.

• Haskell and monads (a more advanced course)

From a programmer perspective, monads can be hard to
understand.

36

Delay

Question. How to delay the evaluation of an expression?
- 1+1;

37

Delay

Question. How to delay the evaluation of an expression?
- 1+1;

- val e = fn () => 1+1;
val e = fn : unit -> int
- e();
val it = 2 : int

38

Delay

Question. How to delay the evaluation of an expression?
- 1+1;

- val e = fn () => 1+1;
val e = fn : unit -> int
- e();
val it = 2 : int

Question. How about delaying arbitrary expression?

39

Delay

- fun delay e = fn () => e;
val delay = fn : 'a -> unit -> 'a
- val e = delay (1+1);

Question. Does delay above work? Does it delay the
evaluation of e?

40

Summary: Abstraction at language level

• Control flow abstraction
– if-then-else as opposed to goto
– functions
– exceptions
– continuations
– evaluation order

• Data abstraction
– data types, abstract data types, modules

• Syntactic abstraction
– macro systems and meta-programming features.

41

Summary: ML

Covered

• Basic ML constructs
• Recursion, tail recursion
• Higher order functions
• Modules (data abstraction)
• Polymorphism, type system, type inference
• Exceptions, continuation (control flow abstraction)

Not covered

• Input/Output
• Files
• Network programming
• Concurrency (see Concurrent ML) . . .

42

	Functional Programming and ML [part 4]
	Abstraction
	Control flow abstraction

	Summary: Abstraction at language level
	Summary: ML

