Functional Programming and ML
[part 4]

In part based on slides from Gerardo Schneider, which where
in turn based on John C. Mitchell’s

Abstraction

Hide details (encapsulation)
Tame complexity

Allow for code reuse

Ll

Communicate relative importance of components

etc

Language support for abstraction can be broken down into
categories:

o Control flow abstraction
— if-then-else as opposed to goto
— exceptions
— continuations
— evaluation order
e Data abstraction
— data types, abstract data types, modules
« Syntactic abstraction
— macro systems and meta-programming features

Control flow abstraction

1968 Go To Statement Considered Harmful (Dijkstra)
if B then S else S end

addr0 cmpl $0x0, B
addrl je addr4
addr2 S

addr3 jmp addrb
addr4 S'

addrb

Similar for:

while B do S end
for B do S end

Exceptions
Terminate part of computation

o Jump out of a construct (as opposed to into another)
— “Wait... but aren’t jumps bad?”

o Pass data as part of jump

e Return to most recent site set up to handle exception

Memory management needed
o Unnecessary activation records need to be deallocated
Two main language constructs

e raise exception: throw Java, raise Python
e handle exception: catch Java, try...except Python

Exceptions in ML

Exceptions do not affect a function’s type signature

- fun f) = 1;
- fun g O if false then raise Div else 1;
- fun h if true then raise Div else 1;

Exceptions must be declared before use
Exceptions are dynamically scoped

e Control jumps to the handler most recently established
(run-time stack)
e ML is otherwise statically scoped

Pattern matching to determine the appropriate handler
(C++/Java uses type matching)

Example in ML

- exception outOfBounds;
exception outOfBounds
- fun nth (n, nil) = raise outOfBounds
| nth (0, h::t) = h
| nth (n, h::t) = nth (n-1, t);
val nth = fn : int * 'a list -> 'a

- val 1st = ["bob", "stuart", "kevin"];

val 1st = ["bob","stuart","kevin"] : string list
- nth(0, 1lst);

val it = "bob" : string

- nth(3, 1lst);

uncaught exception outOfBounds

- fun safeNth(n,xs) = nth(n,xs)
handle X => "minion";
val safeNth = fn : int * string list -> string
- safeNth(3, 1lst);
val it = "minion" : string

Dynamic scoping of handlers
Exception propagates up the call stack
Who handles the exception?

e depends on runtime information
Motivation:

e Users know better how to handle errors
o Author of library function does not

Example: Dynamic scoping of handlers
- exception X;
- (let fun f(y) = raise X

and g(h) = h(1) handle X => 2

in
g(f) handle X => 4
end) handle X => 6;

Question. What is the value of g(£)7?
Question. Which handler will be used? The =>2, 4, or 67

10

Question. What will be the final value when executing
the outer let-expression?

- val x = 6;
- (let fun f(y) = x
and g(h) = (let val x=2 in h(1) end)
in
(let val x=4 in g(f) end)
end) ;

11

Handlers with pattern matching

- exception Signal of int;

- fun f(x) = if x=0 then raise Signal(0)
else if x=1 then raise Signal(1l)
else if x=10 then raise Signal(x-8)
else (x-2) mod 4;

£(10) handle Signal(0) => 0
| Signal(1l) => 1
| Signal(x) => x;

12

Exceptions and resource allocation

- exception X;
- (let val x = ref [1,2] in (* [1,2] heap, z stack *)
let val y = ref [3,4] in (* [3,4] heap, y stack *)
. raise X (* Control to outside scope *)
end
end) (* z, y off stack
[1,2] [3,4] garbage collected *)
handle X => ...;

In Java, use the finally construct to dealloc resources

13

Typing of exceptions

Recall that:
e~ v:T

e: T

What happens when exceptions occur along the way?

Question. What is the type of the expression below?
- 42 + (1 div 0 handle X => 1);

Question. What is the type of the expression below?
- 42 + ((raise Div) handle X => 1);

Note: handle X converts exception to normal termination

14

In general,

e the type of raise e is a type variable 'a
e the type of handle e => e2 is the type of e2

Question. What must be the types of el and 27 Why?
1 + (el handle X => e2)

15

Exception for efficiency

Not just for error conditions

Consider the following definition of tree

datatype tree =
leaf of int
| node of tree * tree;

leaf 10;
node (leaf 10, leaf 2);
node ((node (leaf 10, leaf 2)), leaf 5);

16

Function to multiply values of tree leaves:

- fun prod(leaf x) = x: int
| prod(node(x,y)) = prod(x) * prod(y);

- prod(node ((node (leaf 10, leaf 2)), leaf 5));

Optimized using exception:
- fun prodExep(tree) =
let exception Zero
fun p(leaf x) = if x=0 then (raise Zero) else x
| p(node (x,y)) = p(x) * p(y)
in
p(tree) handle X => 0
end;

17

Even though you can use exceptions for efficiency,

it doesn’t mean you should.

Better to use continuations!

18

Continuations

“A continuation is an abstract representation of the control
state of a computer program.”

“The continuation is a data structure that represents the
computational process at a given point in the process’s
execution;

the created data structure can be accessed by the program-
ming language, instead of being hidden in the runtime
environment.”

https://en.wikipedia.org/wiki/Continuation

19

https://en.wikipedia.org/wiki/Continuation

“A continuation is something which waits for a value in order
to perform some calculations with it.

With every intermediate value in a computation, there is a
continuation associated, which represents the future of the
computation once that value is known.

A continuation is not something, like a function, which takes
a value and returns another: it just takes a value and does
everything that follows to it, and never returns.”

http://www.madore.org/~david/computers/callcc.html

5% 3+ 2

20

http://www.madore.org/~david/computers/callcc.html

Continuations in practice

Scheme (derived-from/dialect-of Lisp): first to implement
first-class continuations

Continuations in ML
Cont module inside SMLofNJ module.

- open SMLofNJ.Cont;

- 3 + callcc (fn k => 2 + 1);
3 + callcc (fn k => 2 + throw k 1);

- callcc;
val it = fn : ('a cont -> 'a) -> 'a

21

Continuations

“One can think of a first-class continuation as saving the
execution state of the program.”

“It is important to note that true first-class continuations
do not save program data — unlike a process image.”

https://en.wikipedia.org/wiki/Continuation

22

https://en.wikipedia.org/wiki/Continuation

Revisiting prod

- fun prodExep(tree) =
let exception Zero
fun p(leaf x) = if x=0 then (raise Zero) else x
| p(node (x,y)) = p(x) * p(y)
in
p(tree) handle X => 0
end;

- fun prodCC(tree) =
callcc (fn k =>
let fun p(leaf x) = if x=0 then (throw k 0) else x
| p(node (x,y)) = p(x) * p(y)
in p(tree) end);

23

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next

- fun plus x y = x + y;
val plus = fn : int -> int -> int

- plus 2 5;
val it = 7 : int

24

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next

- fun plusOt x y k =let val v = x + ¥y
in v end;
val plusOt = fn : int -> int -> 'a -> int

- plusOt 2 5 O;
val it = 7 : int

25

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next

- fun pluscc x y k : int = let val v = x + y
in throw k v end;
val pluscc = fn : int -> int -> int cont -> int

- callcc(pluscc 2 5);
val it = 7 : int

26

Continuation-Passing Style (CPS)

Functions don’t return; they send their result to the next

- fun pluscc x y k : int = let val v = x + y
in throw k v end;
val pluscc = fn : int -> int -> int cont -> int

- callcc(pluscc 2 5);
val it = 7 : int

Question. How does the expression reduce to 77

27

Continuation-Passing Style (CPS)
Programs can be automatically transformed CPS

Functional and logic compilers often use CPS as an inter-
mediate representation (IR)

o Compilers for imperative langs often use static single
assignment form (SSA)
e SSA is equivalent to a subset of CPS

28

Continuations, conclusion
Continuations are a powerful construct;
they can be used to implement other control mechanisms

such as exceptions, generators, coroutines, and so on.

Continuations have been used in practice;

for example, to implement web servers.

However, continuation are often not well understood;
they can add complexity;

some call it “the go-to of functional programming.”

29

Evaluation order

Eager /strict evaluation: Arguments are evaluated be-
fore function is called

Call-by-value
Applicative-Order Evaluation
Ex: C, ML, etc

Non eager: Arguments are not evaluated unless they are
used during the evaluation of the function body

Call-by-name Call-by-need
Normal order reduction Lazy evaluation
Ex: ALGOL 60 Ex: Haskell

30

Example: sq(3+4)
Eager (3 steps)
sq(3+4) ~> sq(7) ~> 7x7 ~> 49

Lazy (4 steps)
5Q(3+4) ~> (3+4)*(3+4) ~> T*(3+4) ~> T*7 ~> 49

31

Example: fst(sq(4), sq(2))

32

Example: fst(sq(4), sq(2))
Eager (5 steps)

fst(sq(4), sq(2))
~> fst(4%4,sq(2)) ~> £st(16,sq(2))
~> fst(16,2%2) ~> fst(16,4) ~> 16

Lazy (3 steps)

fst(sq(4), sq(2))
~> 5q(4) ~> 4x4 ~> 16

33

Example: fst(sq(4), diverge)

34

Question. Why not always use “call-by-need”?

35

Question. Why not always use “call-by-need”?

From a language design perspective, lazy evaluation is very
hard to get right in the presence of side effects.

o Haskell and monads (a more advanced course)

From a programmer perspective, monads can be hard to
understand.

36

Delay

Question. How to delay the evaluation of an expression?
= ildFilg

37

Delay

Question. How to delay the evaluation of an expression?
= ildFilg

- val e = fn () => 1+1;
val e = fn : unit -> int
- eQ;

val it = 2 : int

38

Delay

Question. How to delay the evaluation of an expression?
= ildFilg

- val e = fn () => 1+1;
val e = fn : unit -> int
- eQ;

val it = 2 : int

Question. How about delaying arbitrary expression?

39

Delay
- fun delay e = fn () => e;
val delay = fn : 'a -> unit -> 'a

- val e = delay (1+1);

Question. Does delay above work? Does it delay the
evaluation of e?

40

Summary: Abstraction at language level

o Control flow abstraction
— if-then-else as opposed to goto
— functions
— exceptions
continuations
— evaluation order
e Data abstraction
— data types, abstract data types, modules
e Syntactic abstraction
— macro systems and meta-programming features.

41

Summary: ML

Covered

Basic ML constructs

Recursion, tail recursion

Higher order functions

Modules (data abstraction)

Polymorphism, type system, type inference
Exceptions, continuation (control flow abstraction)

Not covered

Input/Output

Files

Network programming

Concurrency (see Concurrent ML) . ..

42

	Functional Programming and ML [part 4]
	Abstraction
	Control flow abstraction

	Summary: Abstraction at language level
	Summary: ML

