
IN
F 3110 –

2019

1

Logic Programming II

Volker Stolz

stolz@ifi.uio.no

Department of Informatics – University of Oslo

Based on slides by Gerardo Schneider, Arild Torjusen and Martin
Giese, UiO.

IN
F 3110 –

2019

2

Outline

◆ Repetition
• Facts, rules, queries and unification

◆ Today
• Lists in Prolog
• Different views of a Prolog program
• Arithmetic in Prolog
• Cut and negation

IN
F 3110 –

2019

3

Facts and rules
◆ Remember: A declarative program admits two

interpretations
• Declarative interpretation, What is being computed.
• Procedural interpretation, How computation takes place

◆ A Prolog program consists of a sequence of clauses
◆ clauses are facts (H) or rules (H :- A1,...,Ak)

person(anne, sofia, martin, 1960)
child(X,Y) :- person(X,Z,Y,U)

◆ Declaratively, the rule H:- A1 , A2 is read as:
”H is implied by the conjunction A1 , A2”

◆ Procedurally, the rule H:- A1 , A2 is interpreted as
”To answer the query H, answer the conjunctive query
A1 , A2”

IN
F 3110 –

2019

4

Queries and unification

◆ We initiate a computation by posing a query (|?- A1,...,Ak)
| ?- child(paul,Parent))

◆ For queries without variables we will get a yes/no answer.
◆ For queries with variables the result is the substitutions

for (assignment of) the variables which will make the
query true.

◆ The process of matching a query with facts and rules is
called unification. The result of the unification is a
substitution.

IN
F 3110 –

2019

5

Outline

◆ Repetition
• Facts, rules, queries and unification

◆ Today
• Lists in Prolog
• Different views of a Prolog program
• Arithmetic in Prolog
• Cut and negation

IN
F 3110 –

2019

6

Lists in Prolog
• [] : the empty list
• [a,b,c] : a list with three elements
• [a|[b,c]] : another way of writing [a,b,c]
• [a,b|[c]] : the same
• [X | Y] represents a list with first element X and

tail Y
• the member predicate:

member(X, [X|Rest]).
member(X, [H | Tail]) :- member(X, Tail).

• the append predicate:
append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

IN
F 3110 –

2019

7

append
append([], Ys, Ys). /* 1 */
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs). /* 2 */

|-? append([a,b],[c,d],Res)
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

{X=a, Xs=[b], Ys=[c,d], Res=[a|Zs]}

append([b], [c,d], Zs)
append([X1 | Xs1], Ys1, [X1 | Zs1]) :- append(Xs1, Ys1, Zs1).

{X1=b, Xs1=[],Ys1=[c,d],Zs=[b|Zs1]}

append([], [c,d], Zs1)
append([], Ys2, Ys2)

{Ys2=[c,d],Zs1=Ys2=[c,d]}

Res = [a|Zs]
= [a|[b|Zs1]]
= [a|[b|[c,d]]] = [a,b,c,d] .

IN
F 3110 –

2019

8

Different views of a Prolog program
◆ For testing:

| ?- member(wed, [mon, wed, fri]). yes

| ?- append([a,b],[c,d],[a,b,c,d]) . yes

◆ For computing:
| ?- member(X, [mon, wed, fri]).
X = mon ? ; X = wed ?: X = fri ?; no

| ?- append([a,b],[c,d],Zs) .
Zs = [a,b,c,d] ? ;

| ?- append(Xs, Ys, [a,b,c,d]).
Xs = [],Ys = [a,b,c,d] ? ;
Xs = [a], Ys = [b,c,d] ? ;
Xs = [a,b],Ys = [c,d] ? ;
...

IN
F 3110 –

2019

9

Outline

◆ Repetition
• Facts, rules, queries and unification

◆ Today
• Lists in Prolog
• Different views of a Prolog program
• Arithmetic in Prolog
• Cut and negation

IN
F 3110 –

2019

10

Arithmetic in Prolog

◆Prolog programs presented so far were
declarative: they admitted a dual reading as a
formula
• Operations of arithmetic are functional, not relational

◆Arithmetic compromises Prolog’s declarativeness
• Solved in constraint logic programming languages

IN
F 3110 –

2019

11

Arithmetic operators

◆Built-in data structures:
• Integers: 1,2,3,... (+, -, *, //)
• Floating points: 2.3, 3.4456, 5.4e-13,... (+, -, *, /)

◆ Infix vs prefix notation*
• 45+35
• ’+’(45,35)

◆ It is possible to have user-defined operators with
specified priority, associativity, etc

*We will see later how to evaluate expressions

IN
F 3110 –

2019

12

Arithmetic comparison relations
◆ Prolog allows comparison of ground arithmetic expressions (gae, i.e.

expressions without variables). gaes have values
◆ Built-in comparison relations: <, =<, =:= (”equal”), =\=

(”different”), >= and >
◆ Queries

• | ?- 6*3 =:= 9*2.
yes

• | ?- 8 > 5+3.
no

• | ?- 34>=X+4.
uncaught exception: error(instantiation_error,(>=)/2

◆ Note difference between
• = (unifiability relation) 1+1=2 gives no, X = 1 gives X = 1
• == (syntactic equality) 1+1 == 2 gives no , X == x gives no
• \== (syntactic inequality) 1+1\==2 gives yes.
• =:= (value equality) 1+1 =:= 2 gives yes
• =\= (value inequality) 1+1 =\= 2 gives no

IN
F 3110 –

2019

13

Example: ordered lists

ordered([]).
ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

◆Queries
• | ?- ordered([3,4,67,8]).

no
• | ?- ordered([3,4,67, 88]).

yes
• | ? - ordered([3,4,X,88]).

{INSTANTIATION ERROR: 4=<_30 - arg 2}

IN
F 3110 –

2019

14

Evaluation of arithmetic expressions
◆We need to introduce a way to evaluate

expressions
• | ?- X=:=3+4. yields an error
• | ?- X=3+4.

X = 3+4
◆Evaluation is done using ”is”

• | ?- X is 3+4.
X = 7

• ”is” is a builtin predicate which has been defined as an
operator for simpler syntax, we could also write:
| ?- is(X,3+4).
X = 7

IN
F 3110 –

2019

15

Example: Factorial
factorial(0,1).
factorial(N,F) :-N>0, N1 is N-1,

factorial(N1,F1),
F is N*F1.

◆ Queries
• | ?- factorial(5,X).

X = 120
Yes

The following query gives an error however:
• | ?- factorial(X,120).

uncaught exception: error(instantiation_error,(>)/2)
”X>0” is not allowed!

IN
F 3110 –

2019

16

Example: Length of lists

◆An intuitive definition
length([],0).
length([_ | Ts], N+1) :- length(Ts,N).

◆Query
• | ?- length([3,5,56,7],X).

X = 0+1+1+1+1
Yes

◆What’s the problem?
Expressions are not automatically evaluated in Prolog!

but wrong

IN
F 3110 –

2019

17

Example: Length of lists

◆A good definition
length([],0).
length([_ | Ts], N) :- length(Ts,M), N is M+1.

◆Queries
• | ?- length([3,5,56,7],X).

X = 4
Yes

• | ?- length(X,5).
X = [_,_,_,_,_]
yes

IN
F 3110 –

2019

18

length(X,5)

length([],0).
length([_ | Ts], N) :- length(Ts,M), N is M+1.

:- length(X,5)
:- length(Ts,M), 5 is M+1
1. :- 5 is 0+1 Ts/[], M/0 FAIL
2. :- length(Ts1,M1), M is M1+1, 5 is M+1 Ts/[_,Ts1]
2.1 :- M is 0+1, 5 is M+1 Ts1/[], M1/0, Ts/[_,Ts1]
2.1 :- 5 is 1+1 Ts1/[], M1/0, Ts/[_,Ts1], M/1 FAIL
2.2 :- length(Ts2,M2), M1 is M2+1, M is M1+1, 5 is M+1

Ts1/[], M1/0, Ts/[_,Ts1], Ts1/[_,Ts2]
...

IN
F 3110 –

2019

19

Outline

◆ Repetition
• Facts, rules, queries and unification

◆ Today
• Lists in Prolog
• Different views of a Prolog program
• Arithmetic in Prolog
• Cut and negation

IN
F 3110 –

2019

20

cut
◆ cut is a built in system predicate which affects the procedural behaviour of

a program
◆ its main function is to reduce the search space of Prolog computations by

dynamically pruning the search tree.
◆ Ex:

p(s1) :- A1
...
p(si) :- B, !, C
...
p(sk) :- Ak

◆ When cut is encountered,
• all alternative ways of computing B are discarded.
• all computations of p(t) are discarded as backtrackable alternatives.

◆ cut gives more control to the programmer, but compromises the declarative
reading of the Prolog programs and makes it difficult to see what will
happen in the computation.

IN
F 3110 –

2019

21

rsiblings example
◆ Recall the rsiblings rule.

rsiblings(X,Y) :- child(X,Parent1),
child(Y,Parent1),

X \== Y,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

◆ | ?- rsiblings(anne,X).

◆ X = paul ? ;

◆ X = paul ? ;

◆ no

IN
F 3110 –

2019

22

rsiblings with cut
◆ With cut

rsiblings(X,Y) :- child(X,Parent1),
!,
child(Y,Parent1),
X \== Y,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

| ?- rsiblings(anne,X).

X = paul ? ;

no
| ?- rsiblings(X,anne).

no

IN
F 3110 –

2019

23

rsiblings with cut, next try...
◆ rsiblings(X,Y) :- child(X,Parent1),

child(Y,Parent1),
X \== Y,
!,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

| ?- rsiblings(anne,X).

X = paul

yes
| ?- rsiblings(X,anne).

X = paul

yes

But what if anne has more than one sibling?

IN
F 3110 –

2019

24

Cut destroys declarativity

Cut makes it possible to control program execution
-> Added efficiency.

On the other hand:
è Programs become hard to understand.
è Need to document in which ways predicates can

be called.
è Compromises the original intension of the

language.

IN
F 3110 –

2019

25

Negation as failure
◆ Negation can be defined by cut.

not(X) :- X, ! , fail .
not(_) .

◆ The built-in negation operator is \+
| ?- \+ person(haakon,sonja,harald,1973) .
yes

◆ The query \+ A succeeds if and only if the query A
fails.

◆ Corresponds to our “normal” notion of negation if the
negated query always terminates and is ground.
Consider negation of non-ground term X=1:
\+ (X=1)
no

IN
F 3110 –

2019

26

IO in Prolog

l Various predicates for input/output.
l print(f(a)) prints out a term.
l display('Hello World') prints a string.

print_list([]) :- print(nothing).
print_list([X]):- write('only '), print(X).
print_list([X|Ys]) :- print(X), print_list_help(Ys).

print_list_help([]).
print_list_help([X|Xs]) :- write(' and '),print(X),

print_list_help(Xs).

IN
F 3110 –

2019

27

Problem with IO

◆The problem: does not work with backtracking:
io_problem :- print(one), fail.
io_problem :- print(two).
◆Will print onetwo

io_problem :- fail, print(one).
io_problem :- print(two).
◆Will print two

◆even though conjunction should be commutative.

IN
F 3110 –

2019

28

Outline

◆ Repetition
• Facts, rules, queries and unification
• Lists in Prolog
• Different views of a Prolog program

◆ Today
• Arithmetic in Prolog
• Cut and negation

IN
F 3110 –

2019

29

Problems with Prolog

l No types
l No (standardized) module system
l Non-declarative arithmetic
l Need to use cut
l Cut makes automated optimization hard
l IO disaggrees with backtracking

IN
F 3110 –

2019

45

More Logic PLs

l Mercury
l Higher-order logic programming, Lambda-Prolog

l Like Prolog, but lambda terms instead of first order
l Higher-order unification
l Not a functional language!

l Curry: http://www-ps.informatik.uni-kiel.de/currywiki/start
l Constraint Logic Programming languages

l Prolog just gathers instantiations for variables.
l Instead, gather constraints that need to be satisfied.

E.g. X > 3, X < 6, X \== 5

System infers instantiation X=4

http://www-ps.informatik.uni-kiel.de/currywiki/start

