
1

Operating Systems
INF 3151, INF 4151

Administrative Introduction

2

Who is helping you to learn
•  Teachers:

–  Otto Anshus, otto@cs.uit.no
–  Vera Goebel, goebel@ifi.uio.no
–  Thomas Plagemann, plageman@ifi.uio.no
–  Guest lectures from Tore Larsen & Knut Omang

•  PostDoc & PhD student:
–  Stein Kristiansen, steikr@ifi.uio.no
–  Fabrice Starks, fabriceb@student.matnat.uio.no

•  Teaching assistants (“gruppelærer”):
–   Christian Fredrik Fossum Resell, chrifres
–  Finn Tuft, fhtuft
–  Fredrik Lund Henriksen, fredlh
–  Hans Petter Kragset, hpkragse
–  Rune Jensen, runejen
–  Bao Nguyen, bcnguyen

2015: New Approaches

3

2015: New Approaches

•  Reason: resource problems

•  Two major changes:
– Max number of 50 students
– Design documents are mandatory, but do

contribute to final grade (if all passed)

[Source: dagbladet.no]

2016: New Approach

•  It “only” concerns a very
few, but … cheating cases
are painful for all of us

• è rising the bar to cheat
 without getting caught

•  Why, what happens:
–  Kristin Broch Eliassen
–  Ifi student administration
–  Handles cases of suspicion

4

2016: New Approach
•  All development must be done on an UiO GitHub

repository
•  Each team uses one private repository for all projects
•  Information on GitHub at UiO:

–  http://www.uio.no/tjenester/it/maskin/filer/versjonskontroll/
github.html

•  Give full access to your team mate and read/pull access
to your teachers:
–  How to do this -> git & GitHub intro after Project presentation P0

 Learning by doing
•  Guided process to build your OS

–  First design! You propose, we give you feedback!
–  Afterwards implementation
–  In total six projects

•  We track your performance in six projects
–  Mandatory: design (one week)
–  Grading: code (two weeks, except P3 which has only

1 week)
–  Deliverables through Devilry:

•  https://devilry.ifi.uio.no/
•  Deadline: Wednesday 12:00 local time SHARP!

5

Learning by understanding

•  “Synes forelesningene i større grad bør
bygge opp om prekoden og det vi faktisk
skal implementere”
 [Anonymous student comment in course evaluation V2015]

OS implementation What we
teach OS abstractions/theory

Lectures Group lectures

Subject to examination Not examined, but still
very important to

understand

Learning Approach

Concepts
Abstractions

“Theory”
Design Implementation

6

Learning outcome

Implementation Abstractions/theory

“Just a coder”

Potentially an excellent computer scientist

Design

Software Development –
The Classical Waterfall Approach

Requirements

Design

Implementation

Verification

Maintenance

7

Waterfall Approach and INF3151

Requirements

Design

Archiving?

Partially provided in project
description and pre-files

1st deliverable - mandatory

2nd deliverable
to be graded

Testing

Implementation

Your own revision
circles

Help for the
Second deliverable

How to write an Effective Design Document
by Scott Hackett

http://blog.slickedit.com/2007/05/how-to-write-an-effective-design-document

•  Scott Hackett’s blogg is related to design as part as
software development in general
è apply this to our setting!

•  Why a design document?
–  Explain your design decisions and why they are good
–  Formalism and tools are not the most important – as long as

your document conveys your explanations
–  Develop the design document for the audience, i.e., for your

team mate and for us (to help you and to grade you)

“If you fail to plan, then you plan to fail”

8

How to write an Effective Des….. (cont.)

•  What makes a good design?
–  It is good if:

•  it fulfills the requirements in a meaningful way
•  all design decisions are justified (give clear reasons)
•  documents benefits of design decisions

– Diagrams are good and useful, but they must
be explained in text!

More on design ….
Oslo

“At the other side
of the world …”
- Low salary
- High SW skills

Customer

Design/Specification

Code

9

Design as process
•  How to solve the assignments, i.e, develop a

well working program?
•  Read the assignment, study the pre-code, follow

carefully the project presentation
•  Think and discuss with your group mate
•  Identify alternative approaches, e.g, important

data structures, algorithms, etc.
•  Evaluate the approaches and select the best
•  Document the main results of this

process in your design proposal

Design proposal
•  Mandatory deliverable for each project
•  Not more than 10 pages!
•  Description of your plan of how to solve the problem and why in this way
•  Answer all questions in the assignment and raised during the project

presentation
•  Typically this document contains:

–  Brief description of the different alternatives you have studied and why you
selected which.

–  Detailed textual description of the proposed data structures and algorithm(s)
to be used with supporting illustrations in form of figures, flow diagrams, or
pseudo code. If you use standard data structures or algorithms, put your main
emphasis on how they are applied to the problem.

–  Description of what functionality will be implemented in which file/function, and
how these implemented parts will interact (will they work exclusively?
Concurrent? Can they be interrupted? etc.) to attain the goal given in the problem
description.

–  Key details such as why a particular mask value is chosen, how it is
constructed, how and why a particular register is loaded with a particular value,
etc.

•  You will also get hints during the presentation of the project on what should
be addressed in the design proposal è Pay attention!

10

What do we do with the design
proposal?

•  Learn to make a design
•  Give you early feedback

–  Oral presentation of your design proposal to your TA
–  TA gives you feedback whether you are on the right

track or not
→ saves you a lot of time
→ helps you to get a better grade

–  However, the feedback addresses only what you have
taken up in the design document
-> the better the design the more specific the
feedback (and vice versa)

•  If not passed, you are out of the course

Design – The “Smart” Approach
in the previous years

If I implement first
everything and it works I
can write afterwards the
perfect design and get an
“A”

11

Meet and give feedback
Involve TA
Rollback to your own if…

Let’s play outsourcing in P1
Group 1 Group 2

Write and deliver P1a

Exchange P1a

Implement P1b

Grading of Exercises
•  All TAs will give the same amount of support for

students
Read: we help you to learn, but not to make
shortcuts!

•  (Additional help for “desperate” students might
be reflected in the grade)

12

Grading of Exercises

 •  Each mandatory

deliverable is graded
by a TA

•  Each A – F
deliverable is graded
by a PhD student

•  External censor
controls randomly

•  At the end of the term
all grades are
combined and
eventually adapted

Group Lectures
•  Class room (2 hrs. per week):

–  Catching up background
–  Diving into technical depth, e.g., how to …
–  Be active – ask & discuss!!

•  Terminal room (2 hrs. per week):
–  TAs are always available for questions etc.

•  Mandatory design review (one per project per team):
–  Present your design to the TA
–  Get feedback

•  Approx. 20 students per TA
•  Deliverables have to be prepared by teams of two students
•  Teams of three students are not allowed because of grading
•  Initial task: each team sends to Stein Kristiansen their user names

for registration in Devilry

13

Exception Handling - I

•  Sick leave:
–  Official certificate from a medical doctor
–  Oral examination about the missed deliverable

•  Disagreement in a group:
–  Oral examination

•  Cheating / fraud:
–  According to rules of Faculty of Mathematical and

Natural Sciences
–  The declaration you sign is just to make you aware of

the existing rules

The Big NoNo

•  It is not allowed to distributed code from the assignments
or to make it accessible to others (except lecturers and
teaching assistants of the course) neither in paper form nor
in electronic form. This is valid for the code developed from
the students as well as code distributed as part of the
assignments.

•  All contraventions are regarded as fraud!
•  You have to sign a corresponding declaration and deliver it

in the next group lecture to your TA
–  Without it you will not get access to the next assignment!

14

The Big YesYes

•  Start to work hard right from the beginning
•  Be active in the group lectures
•  Discuss with your partner
•  Discuss with other students (but do not

exchange code or the answers to the
theory assignments!)

•  Solving problems and understanding an
OS can be a lot of fun!

Exercises “this week”

•  Kick start into assembler and C
–  Work on a “simple” challenge
–  Strongly related to future challenges in the course

•  You learn also about the programming
environment to be used

•  Start group work …
•  When:

–  Friday 10:15-12:00
–  Monday 8:15-10:00, 10:15-12:00
–  Tuesday 12:15-14:00
–  Wednesday 08:15-10:00, 10:15 – 12:00

15

Questions?

•  Talk to us
•  Take a look at the FAQ

