# Description Logic 1: Syntax and Semantics

Leif Harald Karlsen

Autumn 2015

#### Contents

Introduction

 $\mathcal{ALC}:$  Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

#### Contents

#### Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix



- *Description logics* are formal languages designed for knowledge representation and reasoning, and most of these are decidable fragments of FOL.

#### Overview

- *Description logics* are formal languages designed for knowledge representation and reasoning, and most of these are decidable fragments of FOL.
- Each description logic describes a language, and each language differ in expressibility vs. reasoning complexity, defined by allowing or disallowing different constructs (e.g. conjunction, disjunction, negation, quantifiers, etc.) in their language.

- Description logic comes from a merging of two traditions.

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
  - Application oriented
  - Represent 'knowledge' in some way
  - 'Frames,' like classes, with relations and attributes
  - Try to add some 'semantics' in order to do some 'reasoning'

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
  - Application oriented
  - Represent 'knowledge' in some way
  - 'Frames,' like classes, with relations and attributes
  - Try to add some 'semantics' in order to do some 'reasoning'
- Automated Reasoning, Modal Logic
  - Had theorems and algorithms

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
  - Application oriented
  - Represent 'knowledge' in some way
  - 'Frames,' like classes, with relations and attributes
  - Try to add some 'semantics' in order to do some 'reasoning'
- Automated Reasoning, Modal Logic
  - Had theorems and algorithms
- Cross-fertilisation of applications and theory

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
  - Application oriented
  - Represent 'knowledge' in some way
  - 'Frames,' like classes, with relations and attributes
  - Try to add some 'semantics' in order to do some 'reasoning'
- Automated Reasoning, Modal Logic
  - Had theorems and algorithms
- Cross-fertilisation of applications and theory
- Today: large impact on Semantic Web (sign up for INF3580/4580!)

In description logics one works with three different types of elements:

In description logics one works with three different types of elements:

- individuals/constants (e.g. *james*, *sensor*1)

In description logics one works with three different types of elements:

- individuals/constants (e.g. *james*, *sensor*1)
- concepts/unary relations (e.g. Person, Sensor)

In description logics one works with three different types of elements:

- individuals/constants (e.g. *james*, *sensor*1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. *isFatherOf*, *isConnectedTo*)

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. *isFatherOf*, *isConnectedTo*)

Knowledge is represented as a *knowledge base*,  $\mathcal{K} = \langle \mathcal{A}, \mathcal{T} \rangle$  where:

- A is a set of assertions about named individuals, called the ABox (e.g. Person(james), isFatherOf(james, peter))

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. *isFatherOf*, *isConnectedTo*)

Knowledge is represented as a *knowledge base*,  $\mathcal{K} = \langle \mathcal{A}, \mathcal{T} \rangle$  where:

- A is a set of assertions about named individuals, called the ABox (e.g. Person(james), isFatherOf(james, peter))
- $\mathcal{T}$  is a set of terminology definitions (i.e. complex descriptions of concepts or roles), called the *TBox* (e.g. *Human*  $\sqsubseteq$  *Mammal*, *Mother*  $\equiv$  *Parent*  $\sqcap$  *Woman*)

#### Contents

#### Introduction

#### $\mathcal{ALC}:$ Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

The description logic  $\mathcal{ALC}$  (Attribute Language with general Complement) allows the following concepts:

The description logic  $\mathcal{ALC}$  (Attribute Language with general Complement) allows the following concepts:

| C, D  ightarrow | A             | (atomic concept)          |
|-----------------|---------------|---------------------------|
|                 | Τ             | (universal concept)       |
|                 | ⊥             | (bottom concept)          |
|                 | $\neg C$      | (negation)                |
|                 | $C \sqcup D$  | (union)                   |
|                 | $C \sqcap D$  | (intersection)            |
|                 | $\exists R.C$ | (existential restriction) |
|                 | $\forall R.C$ | (universal restriction)   |

The description logic  $\mathcal{ALC}$  (Attribute Language with general Complement) allows the following concepts:

| C, D  ightarrow | A             | (atomic concept)          |
|-----------------|---------------|---------------------------|
|                 | Т             | (universal concept)       |
|                 | ⊥             | (bottom concept)          |
|                 | $\neg C$      | (negation)                |
|                 | $C \sqcup D$  | (union)                   |
|                 | $C \sqcap D$  | (intersection)            |
|                 | $\exists R.C$ | (existential restriction) |
|                 | $\forall R.C$ | (universal restriction)   |

where A is an atomic concept, C and D are concepts, and R is a role.

The description logic ALC (Attribute Language with general Complement) allows the following concepts:

| $^{\prime}, D \rightarrow$ | A             | (atomic concept)          |
|----------------------------|---------------|---------------------------|
|                            | Τ             | (universal concept)       |
|                            | ⊥             | (bottom concept)          |
|                            | $\neg C$      | (negation)                |
|                            | $C \sqcup D$  | (union)                   |
|                            | $C \sqcap D$  | (intersection)            |
|                            | $\exists R.C$ | (existential restriction) |
|                            | $\forall R.C$ | (universal restriction)   |
|                            |               |                           |

where A is an atomic concept, C and D are concepts, and R is a role. We allow

- ABox assertions: C(a) and R(a, b) for individuals a, b, concepts C and roles R;
- TBox axioms:  $C \sqsubseteq D$  for concepts C and D.

A model  ${\mathcal M}$  for a knowledge base  ${\mathcal K}$  consists of

- a nonempty set  $\Delta$ , and
- an interpretation function  $\_^{\mathcal{M}}$  , such that:
  - for every constant  $c,~c^{\mathcal{M}}\in\Delta$  ,
  - for every atomic concept A,  $A^{\mathcal{M}} \subseteq \Delta$ ,
  - for every atomic role R,  $R^{\mathcal{M}} \subseteq \Delta \times \Delta$ ,

 $\_^{\mathcal{M}}$  is extended inductively as

 $\_^{\mathcal{M}}$  is extended inductively as

$$\begin{split} \top^{\mathcal{M}} &= \Delta \\ \perp^{\mathcal{M}} &= \emptyset \\ (\neg C)^{\mathcal{M}} &= \Delta \backslash C^{\mathcal{M}} \\ (C \sqcup D)^{\mathcal{M}} &= C^{\mathcal{M}} \cup D^{\mathcal{M}} \\ (C \sqcap D)^{\mathcal{M}} &= C^{\mathcal{M}} \cap D^{\mathcal{M}} \\ (\forall R.C)^{\mathcal{M}} &= \left\{ a \in \Delta \mid \forall b \in \Delta \left( \langle a, b \rangle \in R^{\mathcal{M}} \rightarrow b \in C^{\mathcal{M}} \right) \right\} \\ (\exists R.C)^{\mathcal{M}} &= \left\{ a \in \Delta \mid \exists b \in \Delta \left( \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \right) \right\} \end{split}$$

An interpretation  ${\cal M}$  satisfies

- 
$$C(a)$$
, denoted  $\mathcal{M} \models C(a)$ , iff  $a^{\mathcal{M}} \in C^{\mathcal{M}}$ ;

An interpretation  $\mathcal{M}$  satisfies

- C(a), denoted  $\mathcal{M} \models C(a)$ , iff  $a^{\mathcal{M}} \in C^{\mathcal{M}}$ ;
- $C \sqsubseteq D$ , denoted  $\mathcal{M} \vDash C \sqsubseteq D$ , iff  $C^{\mathcal{M}} \subseteq D^{\mathcal{M}}$ ;

An interpretation  ${\mathcal M}$  satisfies

$$- C(a)$$
, denoted  $\mathcal{M} \vDash C(a)$ , iff  $a^{\mathcal{M}} \in C^{\mathcal{M}}$ ;

$$- C \sqsubseteq D$$
, denoted  $\mathcal{M} \vDash C \sqsubseteq D$ , iff  $C^{\mathcal{M}} \subseteq D^{\mathcal{M}}$ ;

$$- R \sqsubseteq P$$
, denoted  $\mathcal{M} \vDash R \sqsubseteq P$ , iff  $R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$ .

As usual, we will write  $\mathcal{K} \vDash \psi$  if for any model  $\mathcal{M}$  we have that  $\mathcal{M} \vDash \mathcal{K} \Rightarrow \mathcal{M} \vDash \psi$ .

An interpretation  $\ensuremath{\mathcal{M}}$  satisfies

- C(a), denoted  $\mathcal{M} \models C(a)$ , iff  $a^{\mathcal{M}} \in C^{\mathcal{M}}$ ;
- $C \sqsubseteq D$ , denoted  $\mathcal{M} \vDash C \sqsubseteq D$ , iff  $C^{\mathcal{M}} \subseteq D^{\mathcal{M}}$ ;
- $R \sqsubseteq P$ , denoted  $\mathcal{M} \vDash R \sqsubseteq P$ , iff  $R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$ .

As usual, we will write  $\mathcal{K} \vDash \psi$  if for any model  $\mathcal{M}$  we have that  $\mathcal{M} \vDash \mathcal{K} \Rightarrow \mathcal{M} \vDash \psi$ .

We will use the following shorthand notation:

- $C \equiv D$  instead of the two axioms  $C \sqsubseteq D$  and  $D \sqsubseteq C$ ;
- $\mathcal{A} \vDash \psi$  instead of  $\langle \emptyset, \mathcal{A} \rangle \vDash \psi$ ;
- $\mathcal{T} \vDash \psi \text{ instead of } \langle \mathcal{T}, \emptyset \rangle \vDash \psi.$

# Example

TBox:

 $\begin{array}{l} Animal \sqsubseteq LivingThing\\ Donkey \equiv Animal \sqcap \forall hasParent.Donkey\\ Horse \equiv Animal \sqcap \forall hasParent.Horse\\ Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey\\ \exists hasParent.Mule \sqsubseteq \bot\end{array}$ 

# Example

TBox:

 $\begin{array}{l} Animal \sqsubseteq LivingThing\\ Donkey \equiv Animal \sqcap \forall hasParent.Donkey\\ Horse \equiv Animal \sqcap \forall hasParent.Horse\\ Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey\\ \exists hasParent.Mule \sqsubseteq \bot\end{array}$ 

ABox:

Horse(Mary) Mule(Peter) Donkey(Sven)

hasParent(Peter, Mary) hasParent(Peter, Carl)

# Example

TBox:

 $\begin{array}{l} Animal \sqsubseteq LivingThing\\ Donkey \equiv Animal \sqcap \forall hasParent.Donkey\\ Horse \equiv Animal \sqcap \forall hasParent.Horse\\ Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey\\ \exists hasParent.Mule \sqsubseteq \bot\end{array}$ 

ABox:

#### Horse(Mary) Mule(Peter) Donkey(Sven)

hasParent(Peter, Mary) hasParent(Peter, Carl) hasParent(Sven, Hannah) hasParent(Sven, Carl)

The function  $\pi$  map concepts to first-order formulae:

The function  $\pi$  map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \lor \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \land \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \land \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \to \pi_{y}(C))$$

The function  $\pi$  map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \lor \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \land \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \land \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \to \pi_{y}(C))$$
We can then map axioms: 
$$\Pi(C \sqsubseteq D) := \forall x (\pi_{x}(C) \to \pi_{x}(D)).$$

The function  $\pi$  map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \lor \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \land \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \land \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \to \pi_{y}(C))$$

We can then map axioms:  $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \rightarrow \pi_x(D)).$ 

#### Theorem

 $a^{\mathcal{I}} \in C^{\mathcal{I}}$  iff  $\mathcal{I} \models_{FOL} \pi_x(C)[a/x]$ , and  $\mathcal{I} \vDash C \sqsubseteq D$  iff  $\mathcal{I} \models_{FOL} \Pi(C \sqsubseteq D)$ .

The function  $\pi$  map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \lor \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \land \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \land \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \to \pi_{y}(C))$$

We can then map axioms:  $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \rightarrow \pi_x(D)).$ 

#### Theorem

$$a^{\mathcal{I}} \in C^{\mathcal{I}} \text{ iff } \mathcal{I} \models_{FOL} \pi_x(C)[a/x], \text{ and } \mathcal{I} \vDash C \sqsubseteq D \text{ iff } \mathcal{I} \models_{FOL} \Pi(C \sqsubseteq D).$$

#### E.g.:

 $\pi_{x}(Animal \sqcap \forall hasParent.Donkey) = Animal(x) \land \forall y(hasParent(x, y) \rightarrow Donkey(y))$  $\Pi(Animal \sqsubseteq LivingThing) = \forall x(Animal(x) \rightarrow LivingThing(x))$ 

The following problems are of interest with respect to a TBox  $\mathcal{T}$ :

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );
- Given two concepts C and D, are C and D equivalent  $(T \vDash C \equiv D)$ ;

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );
- Given two concepts C and D, are C and D equivalent  $(T \vDash C \equiv D)$ ;
- Given two concepts C and D, are C and D disjoint  $(\mathcal{T} \vDash C \sqcap D \sqsubseteq \bot)$ ;

The following problems are of interest with respect to a TBox  $\mathcal{T}$ :

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );
- Given two concepts C and D, are C and D equivalent  $(T \vDash C \equiv D)$ ;
- Given two concepts C and D, are C and D disjoint  $(\mathcal{T} \vDash C \sqcap D \sqsubseteq \bot)$ ;

The following problems are of interest with respect to knowledge bases  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ :

The following problems are of interest with respect to a TBox  $\mathcal{T}$ :

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );
- Given two concepts C and D, are C and D equivalent  $(T \vDash C \equiv D)$ ;
- Given two concepts C and D, are C and D disjoint  $(\mathcal{T} \vDash C \sqcap D \sqsubseteq \bot)$ ;

The following problems are of interest with respect to knowledge bases  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ : - Is  $\mathcal{K}$  consistent ( $\mathcal{K}$  has a model);

The following problems are of interest with respect to a TBox  $\mathcal{T}$ :

- Given a concept C, is C satisfiable  $(\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );
- Given two concepts C and D, are C and D equivalent  $(T \vDash C \equiv D)$ ;
- Given two concepts C and D, are C and D disjoint  $(\mathcal{T} \vDash C \sqcap D \sqsubseteq \bot)$ ;

The following problems are of interest with respect to knowledge bases  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ :

- Is  $\mathcal{K}$  consistent ( $\mathcal{K}$  has a model);
- Given a concept C and an individual a, does  $\mathcal{K}$  entail C(a) ( $\mathcal{K} \vDash C(a)$ );

The following problems are of interest with respect to a TBox  $\mathcal{T}$ :

- Given a concept C, is C satisfiable ( $\langle \mathcal{T}, \{C(x_0)\}\rangle$  has a model);
- Given two concepts C and D, is C subsumed by D ( $\mathcal{T} \vDash C \sqsubseteq D$ );
- Given two concepts C and D, are C and D equivalent  $(T \vDash C \equiv D)$ ;
- Given two concepts C and D, are C and D disjoint  $(\mathcal{T} \vDash C \sqcap D \sqsubseteq \bot)$ ;

The following problems are of interest with respect to knowledge bases  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ :

- Is  $\mathcal{K}$  consistent ( $\mathcal{K}$  has a model);
- Given a concept C and an individual a, does  $\mathcal{K}$  entail C(a) ( $\mathcal{K} \vDash C(a)$ );
- Given a concept C, find all individuals a such that  $\mathcal{K}$  entails C(a).

### Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

– As we have seen  $\mathcal{ALC}$  is the Attribute Language with general Complement.

- As we have seen  $\mathcal{ALC}$  is the Attribute Language with general Complement.
- The  ${\mathcal C}$  actually denotes an extension of a more restrictive language  ${\mathcal {AL}}.$

- As we have seen  $\mathcal{ALC}$  is the Attribute Language with general Complement.
- The  ${\mathcal C}$  actually denotes an extension of a more restrictive language  ${\mathcal {AL}}.$
- In a similar way, we have the following possible extensions of our logic:

- As we have seen  $\mathcal{ALC}$  is the Attribute Language with general Complement.
- The  ${\mathcal C}$  actually denotes an extension of a more restrictive language  ${\mathcal {AL}}.$
- In a similar way, we have the following possible extensions of our logic:
  - $\mathcal{H}$ : Role hierarchies;
  - $\mathcal{R}$ : Complex role hierarchies;
  - $\mathcal{N}$ : Cardinality restrictions;
  - Q: Qualified cardinality restrictions;
  - $\mathcal{O}$ : Closed classes;
  - $\mathcal{I}$ : Inverse roles;
  - $\mathcal{D}$ : Datatypes;
  - ...

- As we have seen  $\mathcal{ALC}$  is the Attribute Language with general Complement.
- The  ${\mathcal C}$  actually denotes an extension of a more restrictive language  ${\mathcal {AL}}.$
- In a similar way, we have the following possible extensions of our logic:
  - $\mathcal{H}$ : Role hierarchies;
  - $\mathcal{R}$ : Complex role hierarchies;
  - $\mathcal{N}$ : Cardinality restrictions;
  - Q: Qualified cardinality restrictions;
  - $\mathcal{O}$ : Closed classes;
  - $\mathcal{I}$ : Inverse roles;
  - $\mathcal{D}$ : Datatypes;
  - ...
- We name the languages by adding the letters of the features to  $\mathcal{ALC}$ . So e.g.  $\mathcal{ALCN}$  is  $\mathcal{ALC}$  extended with cardinality restrictions and  $\mathcal{ALCHI}$  is  $\mathcal{ALC}$  extended with role hierarchies and inverse roles.

- As we have seen  $\mathcal{ALC}$  is the Attribute Language with general Complement.
- The  ${\mathcal C}$  actually denotes an extension of a more restrictive language  ${\mathcal {AL}}.$
- In a similar way, we have the following possible extensions of our logic:
  - $\mathcal{H}$ : Role hierarchies;
  - $\mathcal{R}$ : Complex role hierarchies;
  - $\mathcal{N}$ : Cardinality restrictions;
  - Q: Qualified cardinality restrictions;
  - $\mathcal{O}$ : Closed classes;
  - $\mathcal{I}$ : Inverse roles;
  - $\mathcal{D}$ : Datatypes;
  - ...
- We name the languages by adding the letters of the features to  $\mathcal{ALC}$ . So e.g.  $\mathcal{ALCN}$  is  $\mathcal{ALC}$  extended with cardinality restrictions and  $\mathcal{ALCHI}$  is  $\mathcal{ALC}$  extended with role hierarchies and inverse roles.
- It is common to shorten  $\mathcal{ALC}$  (extended with transitive roles) to just S for more advanced languages, so e.g.  $\mathcal{SHOIN}$  is  $\mathcal{ALC} + \mathcal{H} + \mathcal{O} + \mathcal{I} + \mathcal{N}$ .

-  $\mathcal{H}$  - Role Hierarchies: We allow TBox axioms on the form  $R \sqsubseteq P$  for atomic roles. Semantics:

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g.  $hasFather \sqsubseteq hasParent;$ 

-  $\mathcal{H}$  - Role Hierarchies: We allow TBox axioms on the form  $R \sqsubseteq P$  for atomic roles. Semantics:

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g.  $hasFather \sqsubseteq hasParent;$ 

-  $\mathcal{R}$  - Complex role hierarchies: We allow roles on the form  $R \circ P$  and TBox axioms on the form  $R \circ P \sqsubseteq P$  and  $R \circ P \sqsubseteq R$  for any two roles. Semantics:

$$(R \circ P)^{\mathcal{M}} := ig \{ \langle a, b 
angle \in \Delta^{\mathcal{M}} imes \Delta^{\mathcal{M}} \mid \exists c \in \Delta^{\mathcal{M}} \left( \langle a, c 
angle \in R^{\mathcal{M}} \wedge \langle c, b 
angle \in P^{\mathcal{M}} 
ight) ig \}$$

and

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g. friendOf  $\circ$  enemyOf  $\sqsubseteq$  enemyOf.

- N - Cardinality restrictions: We allow concepts on the form  $\leq nR$  and  $\geq nR$  for any natural number n. Semantics<sup>1</sup>:

$$(\leq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \leq n \}$$
$$(\geq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \geq n \}$$

e.g. *Mammal*  $\sqsubseteq \leq 2$  *hasParent*;

<sup>&</sup>lt;sup>1</sup>We let #S be the cardinality of the set S

- N - Cardinality restrictions: We allow concepts on the form  $\leq nR$  and  $\geq nR$  for any natural number n. Semantics<sup>1</sup>:

$$(\leq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \leq n \}$$
$$(\geq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \geq n \}$$

e.g.  $Mammal \sqsubseteq \leq 2 hasParent;$ 

- Q - Qualified cardinality restrictions: We allow concepts on the form  $\leq nR.C$ and  $\geq nR.C$  for any natural number n. Semantics:

$$(\leq n R.C)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \} \leq n \}$$
$$(\geq n R.C)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \} \geq n \}$$

e.g.  $\textit{RichPeople} \sqsubseteq \ge 2 \textit{ owns.House.}$ 

<sup>&</sup>lt;sup>1</sup>We let #S be the cardinality of the set S

- O - Closed classes: We allow concepts on the form  $\{a_1, a_2, ..., a_n\}$  where  $a_i$  are individuals. Semantics

$$(\{a_1,a_2,\ldots,a_n\})^{\mathcal{M}}:=\{a_1^{\mathcal{M}},a_2^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\}$$

e.g. Days  $\sqsubseteq$  {monday, tuesday, wednesday, thursday, friday, saturday, sunday};

- O - Closed classes: We allow concepts on the form  $\{a_1, a_2, ..., a_n\}$  where  $a_i$  are individuals. Semantics

$$(\{a_1,a_2,\ldots,a_n\})^{\mathcal{M}} := \{a_1^{\mathcal{M}},a_2^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\}$$

e.g. Days  $\sqsubseteq$  {monday, tuesday, wednesday, thursday, friday, saturday, sunday}; -  $\mathcal{I}$  - Inverse roles: We allow roles on the form  $R^-$ . Semantics:

$$(R^-)^\mathcal{M} := \{ \langle \mathsf{a}, \mathsf{b} 
angle \in \Delta^\mathcal{M} imes \Delta^\mathcal{M} \mid \langle \mathsf{b}, \mathsf{a} 
angle \in R^\mathcal{M} \}$$

e.g.  $hasParent^- \sqsubseteq isChildOf$ ;

- O - Closed classes: We allow concepts on the form  $\{a_1, a_2, ..., a_n\}$  where  $a_i$  are individuals. Semantics

$$(\{a_1,a_2,\ldots,a_n\})^{\mathcal{M}} := \{a_1^{\mathcal{M}},a_2^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\}$$

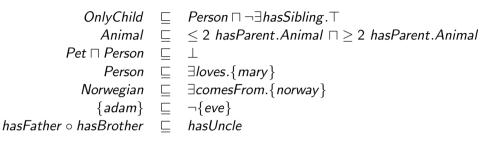
e.g. Days  $\sqsubseteq$  {monday, tuesday, wednesday, thursday, friday, saturday, sunday}; -  $\mathcal{I}$  - Inverse roles: We allow roles on the form  $R^-$ . Semantics:

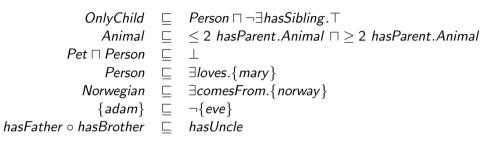
$$(R^{-})^{\mathcal{M}} := \{ \langle a, b 
angle \in \Delta^{\mathcal{M}} imes \Delta^{\mathcal{M}} \mid \langle b, a 
angle \in R^{\mathcal{M}} \}$$

e.g.  $hasParent^- \sqsubseteq isChildOf$ ;

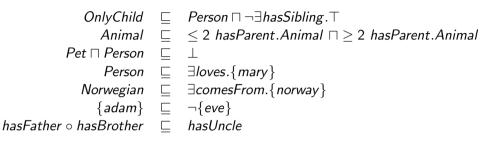
- D - Datatypes: We introduce a set of datatypes: *int,string,float,boolean*, and so on. They all have a fixed interpretation, that is, the same for all models.

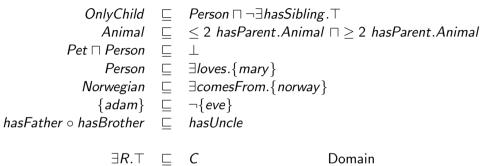
#### *OnlyChild* $\sqsubseteq$ *Person* $\sqcap \neg \exists hasSibling. \top$



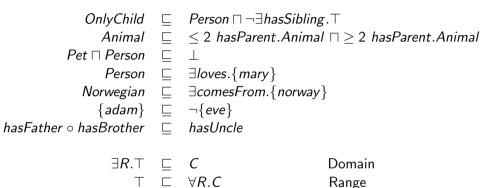


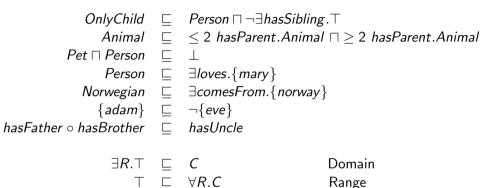
 $\exists R. \top \subseteq C$ 



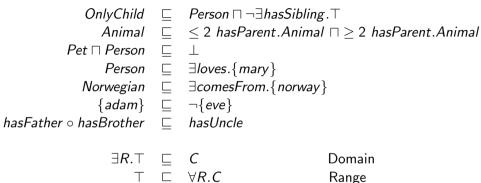


 $\top \sqsubseteq \forall R.C$ 

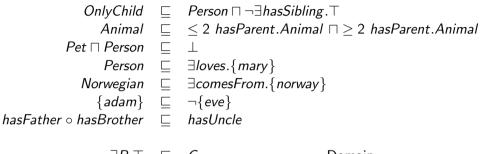


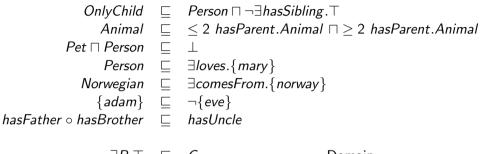


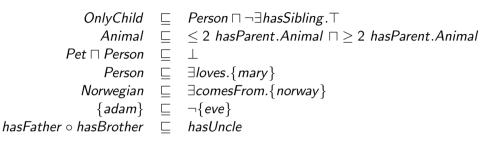
 $R \circ R \square R$ 

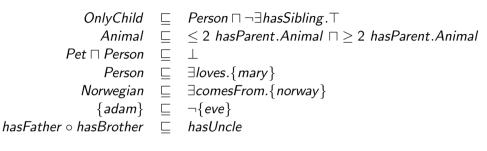


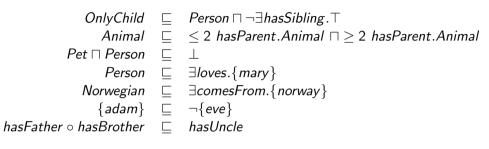
 $R \circ R \sqsubseteq R$  Transitivity

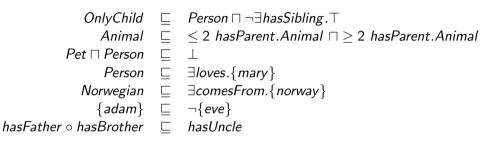












# Complexity results

#### http://www.cs.man.ac.uk/~ezolin/dl/

The description logic  $\mathcal{EL}$  allow the following concepts:

The description logic  $\mathcal{EL}$  allow the following concepts:

| C, D  ightarrow | A             | (atomic concept)          |
|-----------------|---------------|---------------------------|
|                 | Τ Ι           | (universal concept)       |
|                 | ⊥             | (bottom concept)          |
|                 | { <b>a</b> }  | (singular enumeration)    |
|                 | $C \sqcap D$  | (intersection)            |
|                 | $\exists R.C$ | (existential restriction) |

The description logic  $\mathcal{EL}$  allow the following concepts:

| C, D  ightarrow | A             | (atomic concept)               |
|-----------------|---------------|--------------------------------|
|                 | Τ             | (universal concept)            |
|                 | $\perp$       | (bottom concept)               |
|                 | { <b>a</b> }  | ( <i>singular</i> enumeration) |
|                 | $C \sqcap D$  | (intersection)                 |
|                 | $\exists R.C$ | (existential restriction)      |

with the following axioms:

- $C \sqsubseteq D$  and  $C \equiv D$  for concept descriptions D and C.
- $P \sqsubseteq Q$  and  $P \equiv Q$  for roles P, Q.
- C(a) and R(a, b) for concept C, role R and individuals a, b.

Not supported (excerpt):

- negation, (only disjointness of classes:  $C \sqcap D \sqsubseteq \bot$ ),
- disjunction,
- universal quantification,
- cardinalities,
- inverse roles,
- plus some role characteristics.

Not supported (excerpt):

- negation, (only disjointness of classes:  $C \sqcap D \sqsubseteq \bot$ ),
- disjunction,
- universal quantification,
- cardinalities,
- inverse roles,
- plus some role characteristics.
- Captures language used for many large ontologies.
- Checking ontology consistency, class expression subsumption, and instance checking is in **P**.
- "Good for large ontologies."

The description logic DL-Lite<sub>R</sub> allows the following concepts:

The description logic DL-Lite<sub>R</sub> allows the following concepts:

| $C \rightarrow$ | $A \mid \exists R. \top \mid$                                                            | (atomic concept)<br>(existential restriction with $	op$ only)                 |
|-----------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| D  ightarrow    | $\begin{array}{c} A &   \\ \exists R.D &   \\ \neg D &   \\ D \sqcap D' &   \end{array}$ | (atomic concept)<br>(existential restriction)<br>(negation)<br>(intersection) |

The description logic DL-Lite<sub>R</sub> allows the following concepts:

| $C \rightarrow$ | A  <br>∃R.⊤                                                                      | (atomic concept)<br>(existential restriction with $	op$ only)                 |
|-----------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| D  ightarrow    | $\begin{array}{c} A \\ \exists R.D \\ \neg D \\ D \sqcap D' \end{array} \right $ | (atomic concept)<br>(existential restriction)<br>(negation)<br>(intersection) |

with the following axioms:

- $C \sqsubseteq D$  for concept descriptions D and C (and  $C \equiv C'$ ).
- $P \sqsubseteq Q$  and  $P \equiv Q$  for roles P, Q.
- C(a) and R(a, b) for concept C, role R and individuals a, b.

Not supported (excerpt):

- disjunction,
- universal quantification,
- cardinalities,
- functional roles, keys,
- enumerations (closed classes),
- subproperties of chains, transitivity

Not supported (excerpt):

- disjunction,
- universal quantification,
- cardinalities,
- functional roles, keys,
- enumerations (closed classes),
- subproperties of chains, transitivity
- Captures language for which queries can be translated to SQL.
  - Conjunctive queries over a *DL-Lite* knowledge base can be expanded with the TBox to a conjunctive query that can be answered over the Abox alone. This is called *first order rewritability*.
- "Good for large datasets."

The description logic  $\mathcal{RL}$  (also called DLP) allow the following concepts:

The description logic  $\mathcal{RL}$  (also called DLP) allow the following concepts:

| C  ightarrow | A             | (atomic concept)          |
|--------------|---------------|---------------------------|
|              | $C \sqcap C'$ | (intersection)            |
|              | $C \sqcup C'$ | (union)                   |
|              | $\exists R.C$ | (existential restriction) |
| D  ightarrow | A             | (atomic concept)          |
|              | $D \sqcap D'$ | (intersection)            |
|              | $\forall R.D$ | (universal restriction)   |

The description logic  $\mathcal{RL}$  (also called DLP) allow the following concepts:

| $C \rightarrow$ | A             | (atomic concept)          |
|-----------------|---------------|---------------------------|
|                 | $C \sqcap C'$ | (intersection)            |
|                 | $C \sqcup C'$ | (union)                   |
|                 | $\exists R.C$ | (existential restriction) |
| D  ightarrow    | A             | (atomic concept)          |
|                 | $D \sqcap D'$ | (intersection)            |
|                 | $\forall R.D$ | (universal restriction)   |

with the following axioms:

- $C \sqsubseteq D$ ,  $C \equiv C'$ ,  $\top \sqsubseteq \forall P.D$ ,  $\top \sqsubseteq \forall P^-.D$   $P \sqsubseteq Q$ ,  $P \equiv Q^-$  and  $P \equiv Q$  for roles P, Q and concept descriptions D and C.
- C(a) and R(a, b) for concept C, role R and individuals a, b.

### Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
  - These URIs can be URLs, hence they can state where we can find more information about an item.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
  - These URIs can be URLs, hence they can state where we can find more information about an item.
  - URIs can be set to be equal, so we can link two ontologies together by stating which URIs denote the same thing in different contexts.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
  - These URIs can be URLs, hence they can state where we can find more information about an item.
  - URIs can be set to be equal, so we can link two ontologies together by stating which URIs denote the same thing in different contexts.
- OWL provides a concrete syntax for writing axioms, implementations of reasoners over the axioms, and a query language that applies the reasoners for knowledge extraction.

- OWL has various *profiles* that correspond to different DLs.

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to SHION(D);

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to  $\mathcal{SHION}(\mathcal{D})$ ;
- OWL 2 DL: corresponds to SROIQ(D) and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to  $\mathcal{SHION}(\mathcal{D})$ ;
- OWL 2 DL: corresponds to SROIQ(D) and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
  - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$ , and is specifically designed for efficient database integration;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to  $\mathcal{SHION}(\mathcal{D})$ ;
- OWL 2 DL: corresponds to SROIQ(D) and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
  - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$ , and is specifically designed for efficient database integration;
  - OWL 2 EL: Corresponds to  $\mathcal{EL}$ , and is a lightweight language with polynomial time reasoning;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to  $\mathcal{SHION}(\mathcal{D})$ ;
- OWL 2 DL: corresponds to SROIQ(D) and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
  - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$ , and is specifically designed for efficient database integration;
  - OWL 2 EL: Corresponds to  $\mathcal{EL}$ , and is a lightweight language with polynomial time reasoning;
  - OWL 2 RL: Corresponds to  $\mathcal{RL}$ , and is designed for compatibility with rule-based inference tools.

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to SHION(D);
- OWL 2 DL: corresponds to SROIQ(D) and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
  - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$ , and is specifically designed for efficient database integration;
  - OWL 2 EL: Corresponds to  $\mathcal{EL}$ , and is a lightweight language with polynomial time reasoning;
  - OWL 2 RL: Corresponds to  $\mathcal{RL}$ , and is designed for compatibility with rule-based inference tools.

OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL's reasoning capabilities, so stay away if you can—and you almost always can.

### Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

What cannot be expressed in DLs: Brothers

- Given terms

hasSibling Male

- ... a brother is defined to be a sibling who is male
- Best try:

 $hasBrother \sqsubseteq hasSibling$  $\top \sqsubseteq \forall hasBrother.Male$  $\exists hasSibling.Male \sqsubseteq \exists hasBrother.\top$ 

- Not enough to infer that *all* male siblings are brothers

What cannot be expressed in DLs: Diamond Properties

- A semi-detached house has a left and a right unit
- Each unit has a separating wall
- The separating walls of the left and right units are the same
- "diamond property"
- Try...

SemiDetached  $\sqsubseteq \exists hasLeftUnit.Unit \sqcap \exists hasRightUnit.Unit Unit \sqsubseteq \exists hasSeparatingWall.Wall$ 

- And now what?

What cannot be expressed in DLs: Connecting Properties

- Given terms

#### Person hasChild hasBirthday

- A twin parent is defined to be a person who has two children with the same birthday.
- Try...

$$TwinParent \equiv Person \quad \sqcap \ \exists hasChild. \exists hasBirthday[...] \\ \sqcap \ \exists hasChild. \exists hasBirthday[...]$$

- No way to connect the two birthdays to say that they're the same.
  - (and no way to say that the children are not the same)
- Try...

 $TwinParent \equiv Person \sqcap \geq_2 hasChild. \exists hasBirthday[...]$ 

- Still no way of connecting the birthdays

### Reasoning about Numbers

- Reasoning about natural numbers is undecidable in general.
- DL Reasoning is decidable
- Therefore, general reasoning about numbers can't be "encoded" in DL
- For instance, there is no largest prime number:

$$\forall n. \exists p. (p > n \land \forall k, l. p = k \cdot l \rightarrow (k = 1 \lor l = 1))$$

- Could try...

Number(zero) $Number \sqsubseteq \exists hasSuccessor.Number$  $\top \sqsubseteq \leq 1 hasSuccessor.\top$ 

- Cannot encode addition, multiplication, etc.
- Note: a lot can be done with other logics, but not with DLs
  - Outside the intended scope of Description Logics

# FO-rewritability

Assume  $T_L$  is the set of TBoxes over the language L, and that UCQ is the set of queries that are unions of conjunctive queries, and let

 $\mathcal{K} \vDash q_1 \lor q_2 \Leftrightarrow \mathcal{K} \vDash q_1 \text{ or } \mathcal{K} \vDash q_2$  $\mathcal{K} \vDash q_1 \land q_2 \Leftrightarrow \mathcal{K} \vDash q_1 \text{ and } \mathcal{K} \vDash q_2$ 

A description logic  $\mathcal{L}$  enjoys *first order rewritability* if there exists a rewriting function  $\rho : \mathcal{T}_{\mathcal{L}} \times UCQ \rightarrow UCQ$ , such that for any knowledge base  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$  over  $\mathcal{L}$  and any conjunctive query  $q(\vec{x})$  over  $\mathcal{K}$  we have that

$$\mathcal{A}\vDash 
ho(\mathcal{T}, \boldsymbol{q}(ec{a})) \Leftrightarrow \mathcal{K}\vDash \boldsymbol{q}(ec{a})$$

This allows us to divide the querying up into two stages: i) translation of the query, and ii) ABox querying. This is useful for e.g. translating a query from a DL query to an SQL query where the ABox is a relational database.

E.g. let  $\mathcal{T} := \{C_1 \sqsubseteq D, C_2 \sqsubseteq D, A \sqsubseteq C_1\}$  and q(x) := D(x) we have that for any Abox  $\mathcal{A}$  that  $\mathcal{A} \models D(a) \lor C_1(a) \lor C_2(a) \lor \mathcal{A}(a) \Leftrightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models D(a)$