INF3170/4170 Spring 2005:

Completeness for First-Order Tableaux

Christian Mahesh Hansen 8th April 2005

The first-order Model Existence Theorem, as stated and proven in [1], is elegant and strong. By reading and understanding the proof, one learns a powerful proof technique and gains useful insight into core subjects of first-order logic. The proof might, however, be somewhat hard to grasp for a first time logic student. It is my fear that technical details of the proof draw the student's attention away from the primary subjects of this course; correctness and completeness of proof systems. The Model Existence Theorem is stronger than what we need to show completeness for first-order tableaux. Therefore, the completeness proof in this paper replaces the Model Existence Theorem in the syllabus for INF3170/4170 Spring 2005.

The reader should be familiar with first-order tableaux as defined in [1] and the concepts tableau construction rule (Definition 7.8.3 in [1]), sequence of tableaux (Definition 7.8.4 in [1]), König's Lemma (Lemma 2.7.2 in [1]) and Hintikka's Lemma (Proposition 5.6.2 in [1]).

Before we state and prove the completeness theorem we need to define what it means for a tableau construction rule to be *fair*.

- 1 DEFINITION (FAIRNESS) A tableau construction rule \mathcal{R} is fair provided, for any sentence Φ of any first-order language \mathcal{L} , the sequence $\mathbf{T}_1, \mathbf{T}_2, \ldots$, of tableaux for Φ constructed according to \mathcal{R} has the following properties:
 - 1. Every non-literal formula occurrence in \mathbf{T}_n eventually has the appropriate Tableau Expansion Rule applied to it, on each branch on which it occurs.
 - 2. For every γ -formula occurrence γ in \mathbf{T}_n and every closed term t of \mathcal{L}^{par} , γ eventually has the γ -rule applied to it, introducing the sentence $\gamma(t)$ on each branch on which γ occurs.
- 2 THEOREM (COMPLETENESS) Let X be a first-order sentence of a first-order language \mathcal{L} . If X is valid, then X has an atomically closed tableau proof.

PROOF We show the contrapositive, i.e. that X is *not* valid from the assumption that X has *no* atomically closed tableau proof. In order to show that X is not valid, we show that $\neg X$ is satisfiable.

Observe that $\neg X$ occurs in every branch in every tableau we can construct for $\{\neg X\}$. If we show that some branch in a tableau constructed for $\{\neg X\}$ is satisfiable, it follows that $\neg X$ is satisfiable. Let \mathcal{R} be some *fair* tableau construction rule and let $\mathbf{T}_1, \mathbf{T}_2, \mathbf{T}_3, \ldots$ be a sequence of tableaux for X constructed according to \mathcal{R} . We assume that the sequence is infinite. Otherwise, the proof is similar, but simpler. Since the sequence is infinite, and the tree \mathbf{T}_{n+1} extends \mathbf{T}_n , we can view this process as constructing a sequence of approximations of an infinite tree. Let us call this limit object \mathbf{T} .

We will now construct a satisfying model for $\neg X$ based on a branch in \mathbf{T} which contains no atomic contradiction, i.e. neither \bot , nor both A and $\neg A$, where A is an atomic sentence. Alas, we cannot directly use the assumption that X has no atomically closed tableau proof to conclude that \mathbf{T} has a branch with this property. Tableaux are defined as finite objects in [1], and \mathbf{T} is an infinite tree. In order to show that \mathbf{T} contains a branch without atomic contradictions, we assume that \mathbf{T} is atomically closed² and derive a contradiction. Prune each branch of \mathbf{T} by removing all sentences below the occurrence of an atomic contradiction. Call the resulting tree \mathbf{T}^* . In \mathbf{T}^* , every branch is finite, so by König's Lemma (Lemma 2.7.2 in [1]) \mathbf{T}^* itself is finite. Then, for some n, \mathbf{T}^* must be a subtree³ of \mathbf{T}_n , and thus \mathbf{T}_n is atomically closed. But this is impossible, since we assume that X has no atomically closed tableau proof. Thus, \mathbf{T} cannot be atomically closed.

Let θ be some branch in **T** without atomic contradictions. Since \mathcal{R} is fair, if α occurs on θ , then so does α_1 and α_2 . If β occurs on θ , then so does either β_1 or β_2 . If $\neg \neg Z$ occurs in θ , then so does Z. If γ occurs on θ , then so does $\gamma(t)$ for every closed term t (of \mathcal{L}^{par}). If δ occurs on θ , then so does $\delta(p)$ for some parameter p of par. Since θ is without atomic contradictions, not both an atomic formula and its negation occur on θ . It follows that the set S of sentences on θ is a first-order Hintikka set (with respect to \mathcal{L}^{par}). By Hintikka's Lemma (Proposition 5.6.2 in [1]) S is satisfiable. Since $\neg X$ is in S, $\neg X$ is satisfiable.

References

 M. C. Fitting. First-Order Logic and Automated Theorem Proving. Graduate Texts in Computer Science. Springer-Verlag, Berlin, 2nd edition, 1996. 1st ed., 1990.

 $^{{}^{1}(\}mathbf{T}_{n+1})$ is the result of one application of a Tableau Expansion Rule to \mathbf{T}_{n} .

²We define an infinite tree as atomically closed in the same way as an atomically closed tableau, i.e. that every branch contains an atomic contradiction.

 $^{^3}$ A tree T' is a subtree of a tree T if the nodes and edges of T' form subsets of the nodes and edges of T.