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The first-order Model Existence Theorem, as stated and proven in [1], is elegant
and strong. By reading and understanding the proof, one learns a powerful proof
technique and gains useful insight into core subjects of first-order logic. The
proof might, however, be somewhat hard to grasp for a first time logic student.
It is my fear that technical details of the proof draw the student’s attention away
from the primary subjects of this course; correctness and completeness of proof
systems. The Model Existence Theorem is stronger than what we need to show
completeness for first-order tableaux. Therefore, the completeness proof in this
paper replaces the Model Existence Theorem in the syllabus for INF3170/4170
Spring 2005.

The reader should be familiar with first-order tableaux as defined in [1]
and the concepts tableau construction rule (Definition 7.8.3 in [1]), sequence

of tableaux (Definition 7.8.4 in [1]), König’s Lemma (Lemma 2.7.2 in [1]) and
Hintikka’s Lemma (Proposition 5.6.2 in [1]).

Before we state and prove the completeness theorem we need to define what
it means for a tableau construction rule to be fair.

1 Definition (Fairness) A tableau construction rule R is fair provided, for

any sentence Φ of any first-order language L, the sequence T1,T2, . . ., of tableaux

for Φ constructed according to R has the following properties:

1. Every non-literal formula occurrence in Tn eventually has the appropriate

Tableau Expansion Rule applied to it, on each branch on which it occurs.

2. For every γ-formula occurrence γ in Tn and every closed term t of Lpar,

γ eventually has the γ-rule applied to it, introducing the sentence γ(t) on

each branch on which γ occurs.

2 Theorem (Completeness) Let X be a first-order sentence of a first-order

language L. If X is valid, then X has an atomically closed tableau proof.

Proof We show the contrapositive, i.e. that X is not valid from the assumption
that X has no atomically closed tableau proof. In order to show that X is not
valid, we show that ¬X is satisfiable.
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Observe that ¬X occurs in every branch in every tableau we can construct
for {¬X}. If we show that some branch in a tableau constructed for {¬X} is
satisfiable, it follows that ¬X is satisfiable. Let R be some fair tableau con-
struction rule and let T1,T2,T3, . . . be a sequence of tableaux for X constructed
according to R. We assume that the sequence is infinite. Otherwise, the proof is
similar, but simpler. Since the sequence is infinite, and the tree Tn+1 extends1

Tn, we can view this process as constructing a sequence of approximations of
an infinite tree. Let us call this limit object T.

We will now construct a satisfying model for ¬X based on a branch in T

which contains no atomic contradiction, i.e. neither ⊥, nor both A and ¬A,
where A is an atomic sentence. Alas, we cannot directly use the assumption
that X has no atomically closed tableau proof to conclude that T has a branch
with this property. Tableaux are defined as finite objects in [1], and T is an
infinite tree. In order to show that T contains a branch without atomic con-
tradictions, we assume that T is atomically closed2 and derive a contradiction.
Prune each branch of T by removing all sentences below the occurrence of an
atomic contradiction. Call the resulting tree T

∗. In T
∗, every branch is finite,

so by König’s Lemma (Lemma 2.7.2 in [1]) T
∗ itself is finite. Then, for some

n, T
∗ must be a subtree3 of Tn, and thus Tn is atomically closed. But this

is impossible, since we assume that X has no atomically closed tableau proof.
Thus, T cannot be atomically closed.

Let θ be some branch in T without atomic contradictions. Since R is fair,
if α occurs on θ, then so does α1 and α2. If β occurs on θ, then so does either
β1 or β2. If ¬¬Z occurs in θ, then so does Z. If γ occurs on θ, then so does
γ(t) for every closed term t (of Lpar). If δ occurs on θ, then so does δ(p) for
some parameter p of par. Since θ is without atomic contradictions, not both an
atomic formula and its negation occur on θ. It follows that the set S of sentences
on θ is a first-order Hintikka set (with respect to Lpar). By Hintikka’s Lemma
(Proposition 5.6.2 in [1]) S is satisfiable. Since ¬X is in S, ¬X is satisfiable.
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1(Tn+1 is the result of one application of a Tableau Expansion Rule to Tn.)
2We define an infinite tree as atomically closed in the same way as an atomically closed

tableau, i.e. that every branch contains an atomic contradiction.
3A tree T

′ is a subtree of a tree T if the nodes and edges of T
′ form subsets of the nodes

and edges of T .
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