Multimedia protocols
INF 3190
Michael Welzl
Multimedia

• Combined use of more content forms: text, graphics, audio, video, ...
 – Networks context: multimedia usually means that audio and/or video are used

• Only real-time multimedia of interest
 – Downloading a movie is not much different from downloading a large piece of software (but, note: it’s large)
 – Here, “Real-time” means soft real-time

• Requirements differ:
 – one-way streaming media: compensate network fluctuations by buffering; buffer size → initial delay + time lag (can be bad for live TV broadcasts...)
 – interactive application: buffer size → delay during usage
 – Often, timely is more important than reliable delivery → avoid retransmissions
Characterizing multimedia streams

No constraints, like file transfer

"adaptive"

Hard real-time constraints

Soft real-time constraints
Quality of Service (QoS)

• How to support multimedia bandwidth / delay requirements:
 – use special network mechanisms that can do it (QoS)
 – or dimension the network accordingly

• Both approaches cost money
 – Dimensioning: usually less. It’s also less risky...
 – Internet QoS was once a big thing (because of notion: “value-added services” = more money), but is now a history lesson
 – So we end it here 😊 and assume a non-QoS-Internet from now on
 – Note: perfectly dimensioned networks are also not assumed: not very interesting (and not always possible – e.g. WiFi)
 • Remember, multimedia content is large; there is never a “good enough”
Transmission modes

1 Sender
2 Receivers

Unicast

Broadcast

Overlay Multicast

IP Multicast
Multicast issues

- Required for applications with multiple receivers only
 - video conferences, real-time stream transmission (e.g. radio, TV), ..

- Issues:
 - group management
 - protocol required to dynamically join / leave group: Internet Group Management Protocol (IGMP)
 - state in routers: hard / soft (lost unless refreshed)?
 - who initiates / controls group membership?
 - congestion control
 - scalability (ACK implosion), dealing with receiver heterogeneity, fairness

- Multicast congestion control mechanism classification:
 - sender- vs. receiver-based, single-rate vs. multi-rate (layered),
 - reliable vs. unreliable, end-to-end vs. network-supported
Multimedia content fluctuates

• This is natural: sometimes we talk, sometimes we don’t, sometimes we move, sometimes we don’t.
 – exploited by compression schemes
 – Necessary to cope with size of multimedia content

• Typical values:
 Uncompressed
 • video: 140 – 216 Mbit/s; audio (CD): 1.4 Mbit/s; speech: 64 Kbit/s
 – Compressed audio & video:
 • VOD: down to 1.2 – 4 Mbit/s; Conf.: down to 128 Kbit/s
 – Compressed speech: down to 6.2 Kbit/s
Example: MPEG-1

- International Standard: Moving Pictures Expert Group
 - Compression of audio and video for playback (1.5 Mbit/s), real-time decoding
- Sequence of I-, P-, and B-Frames

I-Frames “intra-coded”
B-Frames bi-directionally coded
P-Frames predictive coded
Matching stream and network rates

- Works if lucky, and buffer large enough
- Large buffer \Leftrightarrow interactivity
Matching stream and network rates /2

- Ideal case
- Realistic?
Matching stream and network rates /3

- "Adaptive Multimedia Application"
- Smoother network bandwidth would facilitate matching
Adaptive multimedia: the user experience

- Studied by several research groups
 - Automatically evaluate "user experience" by judging received content based on knowledge about users
 - Study heartbeat etc. of users who test adaptive multimedia; surveys

- Consistent result: users do not like fluctuations

<table>
<thead>
<tr>
<th>RAP (TCP-"friendly")</th>
<th>5 different BG traffic levels</th>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>3 short movies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intro</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\alpha = 1, \beta = 0.5 \)
- \(\alpha = 0.31, \beta = 0.875 \)
- \(\alpha = 1.3125, \beta = 0.125 \)
Resulting transport layer problem

- How to be fair towards TCP (“TCP-friendly”) and have a relatively stable (“smooth”) rate
 - Several ways to do this
 - Well known example: TCP-Friendly Rate Control (TFRC)
 - Determines sending rate by calculating how much TCP would send under similar conditions
 - Note: TFRC is not a protocol (only a congestion control mechanism)

\[T = \frac{s}{R \sqrt{\frac{2p}{3}} + t_{RTO}(3\sqrt{\frac{3p}{8}})p(1 + 32p^2)} \]

- \(s \): packet size
- \(R \): rtt
- \(t_{RTO} \): TCP retransmit timeout
- \(p \): steady-state loss event rate
Datagram Congestion Control Protocol (DCCP)

• Motivation: provide unreliable, timely delivery
 – e.g. VoIP: significant delay = 😞, but some noise = 😊
 – UDP: no congestion control
 • unresponsive applications endanger others (congestion collapse) and may hinder themselves (queuing delay, loss, ..)

• DCCP realizes congestion control in the OS, where it belongs
DCCP /2

• Roughly:
 – DCCP = TCP – (bytestream semantics, reliability)
 = UDP + (congestion control w/ ECN, handshakes, ACKs)

• Main specification does not contain congestion control mechanisms
 – CCID definitions (e.g. TCP-like, TFRC, TFRC for VoIP)

• IETF standard – but not used much (up to now ?)
One-way streaming over TCP

- Assumption: buffering (delay) doesn’t matter ⇒ no need for a smooth rate!
- Little loss case: TCP retransmissions won’t hurt
- Heavy loss case:
 - DCCP: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...
 - TCP: (assume window = 3): 1, 2, 3, 2, 3, 4, 3, 4, 5, 4...
 - Application would detect: 4 out of 10 expected packets arrived ⇒ should reduce rate
 - Is receiving 1, 4, 7, 10 instead of 1, 2, 3, 4 really such a big benefit? Or is it just a matter of properly reacting?
In RealPlayer and MediaPlayer, TCP can be used for streaming... seems to work well (also in YouTube!)
Real-time Transport Protocol (RTP)

• Designed for requirements of (soft!) real-time data transport
 – NOT a transport protocol
 – Two Components: RTP and RTP Control Protocol (RTCP)

• Provides several important functions
 – sequencing and loss detection (sequence numbers)
 – synchronization (timestamps)
 – payload identification (RTP profiles)
 – (via RTCP) QoS feedback and session information
 – scalable multicast support (…)
 – mixers and translators to adapt to bandwidth limitations
 – support for changing codecs on the fly, encryption
RTP Packet Format

• Relatively long header (>40 bytes)
 – overhead carrying possibly small payload
 – header compression
 – other means to reduce bandwidth (e.g. silence suppression)

• Header extensions for payload specific fields possible
 – Specific codecs
 – Error recovery mechanisms

• RTP can be used over any transport protocol – usually UDP
Profiles and Payload Types

• Profiles define codecs used to encode the payload data and their mapping to payload format codes ("Payload Type" header field)

• Each profile is accompanied by several payload format specifications
 – e.g. audio: G.711, G.723, G.726, G.729, GSM, QCELP, MP3, DTMF etc., and video: H.261, H.263, H.264, MPEG

• A complete specification of RTP for a particular application usage requires a profile and/or payload format specification(s)
Example profiles

• Profile for Audio and video conferences with minimal control defines
 – a set of static payload type assignments
 – mechanism for mapping between payload formats
 – and a payload type identifier (in header) using the Session Description Protocol (SDP)
 • mapping can be dynamic, i.e. per-session

• Secure Real-time Transport Protocol (SRTP) = profile that provides cryptographic services for the transfer of payload
RTP Control Protocol (RTCP)

- Monitoring
 - of QoS / application performance

- Feedback to members of a group about delivery quality, loss, etc.
 - Sources may adjust data rate
 - Receivers can determine if QoS problems are local or network-wide

- Loose session control
 - Convey information about participants and session relationships

- Automatic adjustment to overhead
 - report frequency based on RTP sending rate and participant count
RTCP Sender / Receiver Reports

• Sender report
 – Sender Information
 • Timestamps, Packet Count, Byte Count
 – List of statistics per source

• Receiver report
 – For each source
 • Loss statistics
 • Inter-arrival jitter
 • Timestamp of last SR
 • Delay between reception of last SR and sending of RR

• Analysis of reports
 – Cumulative counts for short and long time measurements
 – NTP timestamp for encoding- and profile independent monitoring
RTP Quality Adaptation

- Component interoperations for control of quality
- Evaluation of sender and receiver reports
- Modification of encoding schemes and parameters
- Adaptation of transmission rates
- Hook for possible retransmissions (outside RTP)
RTP Mixer

- Reconstructs constant spacing generated by sender
- Translates audio encoding to a lower-bandwidth
- Mixes reconstructed audio streams into a single stream
- Resynchronizes incoming audio packets
 - New synchronization source value (SSRC) stored in packet
 - Incoming SSRCs are copied into the contributing synchronization source list (CSRC)
- Forwards the mixed packet stream
- Useful in conference bridges
RTP Translator

- Translation between protocols
 - e.g., between IP and ST-2
 - Two types of translators are installed
- Translation between encoding of data
 - e.g. for reduction of bandwidth without adapting sources
- No resynchronization in translators
 - SSRC and CSRC remain unchanged
Signaling Protocols

• Control of media delivery by sender or receiver
 – Sender and receiver “meet” before media delivery

• Signaling should reflect different needs
 – Media-on-demand
 • Receiver controlled delivery of content; explicit session setup
 – Internet telephony and conferences:
 • Bi-directional data flow, live sources; (mostly) explicit session setup, mostly persons at both ends
 – Internet broadcast
 • Sender announces multicast stream; no explicit session setup
Real-Time Streaming Protocol (RTSP)

• Internet media-on-demand
 – Select and playback streaming media from server
 – Similar to VCR (start, stop, pause, ..), but
 • Potentially new functionality
 • Integration with Web
 • Security
 • Varying quality

• RTSP is also usable for
 – Near video-on-demand (multicast)
 – Live broadcasts (multicast, restricted control functionality)
 – ...

RTSP Approach

• In line with established Internet protocols
 – Similar to HTTP 1.1 in style
 – Range definitions
 – Proxy usage
 – Expiration dates for RTSP DESCRIBE responses
 – Other referenced protocols from Internet (RTP, SDP)

• Functional differences from HTTP
 – Data transfer is separate from RTSP connection; typically via RTP
 – Server maintains state – setup and teardown messages
 – Server as well as clients can send requests
RTSP Features

• Rough synchronization
 – Media description in DESCRIBE response
 – Timing description in SETUP response
 – Fine-grained through RTP sender reports

• Aggregate and separate control of streams possible

• Virtual presentations: synchronized streams from multiple servers
 – Server controls timing for aggregate sessions
 – RTSP Server may control several data (RTP) servers

• Load balancing through redirect at connect time
 – Use REDIRECT at connect time

• Caching
 – Only RTSP caching so far
RTSP Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIONS</td>
<td>C → S</td>
<td>determine capabilities of server/client</td>
</tr>
<tr>
<td></td>
<td>C ← S</td>
<td></td>
</tr>
<tr>
<td>DESCRIBE</td>
<td>C → S</td>
<td>get description of media stream</td>
</tr>
<tr>
<td>ANNOUNCE</td>
<td>C ← S</td>
<td>announce new session description</td>
</tr>
<tr>
<td>SETUP</td>
<td>C → S</td>
<td>create media session</td>
</tr>
<tr>
<td>RECORD</td>
<td>C → S</td>
<td>start media recording</td>
</tr>
<tr>
<td>PLAY</td>
<td>C → S</td>
<td>start media delivery</td>
</tr>
<tr>
<td>PAUSE</td>
<td>C → S</td>
<td>pause media delivery</td>
</tr>
<tr>
<td>REDIRECT</td>
<td>C ← S</td>
<td>redirection to another server</td>
</tr>
<tr>
<td>TEARDOWN</td>
<td>C → S</td>
<td>immediate teardown</td>
</tr>
<tr>
<td>SET_PARAMETER</td>
<td>C ← S</td>
<td>change server/client parameter</td>
</tr>
<tr>
<td>GET_PARAMETER</td>
<td>C ← S</td>
<td>read server/client parameter</td>
</tr>
</tbody>
</table>
Session Initiation Protocol (SIP)

• Lightweight generic signaling protocol

• Internet telephony and conferencing
 – call: association between number of participants
 – signaling association as signaling state at endpoints (no network resources)

• Several “services” needed
 – Name translation, user location, feature negotiation, call control
SIP Basics

• Establish calls between users
 – directly or forwarding (manual and automatic)
 – re-negotiate call parameters
 – terminate and transfer calls

• Supports personal mobility (change of terminal)
 – through proxies or redirection

• Control, location and media description (via SDP)

• Extensible
 – IMS – Internet Multimedia Subsystem – the next generation of telecoms’ service gateways
SIP – Methods

• Basic Methods:
 – INVITE: session setup – like RTSP SETUP and DESCRIBE in one
 – ACK: like RTSP ACK
 – OPTIONS: like RTSP OPTIONS
 – BYE: end a session
 – CANCEL: terminate an ongoing session setup operation
 – REGISTER: register a user in a location server, update location, ...

• Additional Methods (partially standardized):
 – INFO: carry information between User Agents
 – REFER: ask someone to send an INVITE to another participant
 – SUBSCRIBE: request to be notified of specific event
 – NOTIFY: notification of specific event
SIP Operation – Proxy Mode

- Proxy forwards requests
 - possibly in parallel to several hosts
 - cannot accept or reject call
 - useful to hide location of callee
SIP Operation – Redirect Mode

1. Invite u@domain1

2. Where?

3. domain2

4. Moved temporarily
 Location: user@domain2

5. ACK u@domain1

6. Invite user@domain2

7. “Ring”

8. ACK user@domain2

Site A

User with “symbolic name” calls another

Site B

location server

Redirect Mode

UNIVERSITY OF OSLO
PSTN: SS7 / SIGTRAN

(PSTN = Public Switched Telephone Network)

- SS7: telephony signaling protocols
 - mainly call setup and teardown
 - international standard + national variants
 - services such as call forwarding (busy and no answer), voice mail, call waiting, conference calling, calling name and number display, ...

- SIGTRAN: IETF standards, most importantly SCTP
 - **efficiently** transferring such data over the Internet
SCTP services: SoA TCP + extras

<table>
<thead>
<tr>
<th>Services/Features</th>
<th>SCTP</th>
<th>TCP</th>
<th>UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-duplex data transmission</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Connection-oriented</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Reliable data transfer</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Unreliable data transfer</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Partially reliable data transfer</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Ordered data delivery</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Unordered data delivery</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Flow and Congestion Control</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ECN support</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Selective acks</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Preservation of message boundaries (ALF)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PMTUD</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Application data fragmentation</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Multistreaming</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Multihoming</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Protection against SYN flooding attack</td>
<td>yes</td>
<td>no</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Application Level Framing (ALF)

- Concept applied in RTP and SCTP
 - Byte stream (TCP) inefficient when packets are lost
 - Application may want logical data units ("chunks")

- ALF: app chooses packet size = chunk size
 packet 2 lost: no unnecessary data in packet 1,
 use chunks 3 and 4 before retrans. 2 arrives

- 1 ADU (Application Data Unit) = multiple chunks \ ALF still more efficient!
Unordered delivery & multistreaming

• Decoupling of reliable and ordered delivery
 – Unordered delivery: eliminate Head-Of-Line blocking delay

TCP receiver buffer

| Chunk 2 | Chunk 3 | Chunk 4 | Chunk 1 |

App waits in vain!

• Support for multiple data streams
 (per-stream ordered delivery)
 - Stream sequence number (SSN) preserves order within streams
 - no order preserved between streams
Multihoming

• ...at transport layer! (i.e. transparent for apps, such as FTP)

• TCP connection ⇔ SCTP association
 – 2 IP addresses, 2 port numbers ⇔ 2 sets of IP addresses, 2 port numbers

• Goal: robustness (*not load balancing – yet?)
 – automatically switch hosts upon failure
 – eliminates effect of long routing reconvergence time

• TCP: no “keepalive“ messages when connection idle

• SCTP monitors reachability via ACKs of data chunks and heartbeat chunks
References

• INF3190 2009 slides by Carsten Griwodz