

INF3190 – Mandatory Assignment

- Must be approved prior to the submission of HE1
- Individual work
- The goal is to learn about *abstraction* and layering in networking stack
- ⇒ focus on the link layer and implementing the flow control feature

Learning:

- 1. UNIX socket programming in C
- Sliding window (chapter 3, Tanenbaum's book)
- 3. Linux shell commands

Program's Structure (UI)

- A client-server program (tested on IFI machines) for "file transfer"
- Usage: ./main <port> <id><port> is the UDP port used
 id> is the fake MAC address
 SEND <filename>
 QUIT
- Step #1) PHY is "UP":
- 1. Client sends a UDP packet containing "CONNECT" (a unique number for PHY link)
- 2. Server **responds** with "UP" in a UDP packet (I1_linkup)
- 3. Client assumes that PHY link is up now (I1_linkup)
- ... sending frames

Program's Structure

- Step #2) Flow control implementation
 - e.g. Stop-and-Wait (acceptable for this assignment)
 - Recommended to implement a **Go-Back-N** or **Selective Repeat** => © with HEs
 - LL provides **full-duplex** communication for the higher layers

Pre-code

You'll be given a pre-code with plenty of files (feel free to modify them):

```
delayed_droping_sendto.c
delayed droping sendto.h
delayed sendto.c (designed to make the delay => to trigger the flow control mechanism)
delayed_sendto.h
irq.c
irq.h
l1_phys.c
l1_phys.h
12 link.c
l2_link.h
13 net.c
13_net.h
l4_trans.c
l4_trans.h
I5_app.c
I5_app.h
main.c
slow receiver.c (designed to make the delay => to trigger the flow control mechanism)
slow_receiver.h
```


Program's Structure (PHY)

- On the top of existing IP layer on linux machines
- Other L1 functions provided to LL:
 - int l1_send (int device, const char * buf, int length);
 - 2. void I1_handle_event () that uses recvfrom () which calls either I1_linkup () or I2_recv ()

Application (L5)

Transport (L4)

Network (L3)

Program's Structure (Link Layer)

- Maximum 100 bytes frames! (both DATA and ACKs)
- L2 functions:
 - 1. I2_init () to support multiple simultaneous links
 - 2. int I2_send (int dest_mac_addr, const char * buf, int length) If sending frame is within the sliding window, save the frame of the window and return 1 If not then return 0
 - 3. void I2_recv (int device, const char * buf, int length) received frames to be delivered to higher layer protocols without LL header by calling I3_recv ()

Application (L5)

Transport (L4)

Network (L3)

LL (L2)

PHY (L1)

(Delivery == Devilry)

– What to include in the delivery:

A. Design document (written with editors e.g. LaTeX; pdf-only submission)

- A discussion about flow control, and the advantages of the more advanced sliding window protocols
- 2. How the program is designed?
- 3. Function calls map and details about headers, formats, etc
- 4. Consisting files (C files, header files, etc)

B. Program code (with inline documentation)

- 1. Documents all variables and definitions
- 2. What each function does?
- 3. Input and output parameters
- 4. Global variable changes
- 5. Returns values
- 6. Other characteristics that are important to know about (e.g. error situations)

(Delivery == Devilry)

When to deliver? Before Friday 17 February 2012 23:59

Q&A?

