
Department of Informatics 
Networks and Distributed Systems (ND) group 

INF 3190 
Summary lecture 
 

Michael  Welzl 



2 

Pensum: forelesninger! 

•  “Pensum defineres av forelesningene og gruppetimene 
og består av forelesningsnotatene, oppgavesettene, 
oppgaveregningene og annet materiale som blir 
tilgjengelig på nettsidene i løpet av semesteret. Det er 
altså ingen lærebok, men for de som er interessert kan 
følgende anbefales som ekstralitteratur:” 

•  First in list: Tanenbaum 
–  What was talked about in lectures but is not covered 

in this book? 
–  What follows are examples, it’s not a complete list! 
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Path	
  MTU	
  Discovery:	
  
only	
  old	
  version	
  in	
  Tanenbaum	
  (RFC	
  1191)	
  

•  (IP)	
  fragmenta/on	
  =	
  inefficient	
  
–  But	
  small	
  packets	
  have	
  large	
  header	
  overhead	
  

•  Path	
  MTU	
  Discovery:	
  determine	
  the	
  largest	
  packet	
  that	
  does	
  
not	
  get	
  fragmented	
  
–  originally	
  (RFC	
  1191,	
  1990):	
  start	
  large,	
  reduce	
  upon	
  recep/on	
  of	
  ICMP	
  

message	
  è	
  black	
  hole	
  problem	
  if	
  ICMP	
  messages	
  are	
  filtered	
  
–  now	
  (RFC	
  4821,	
  2007):	
  start	
  small,	
  increase	
  as	
  long	
  as	
  transport	
  layer	
  

ACKs	
  arrive	
  è	
  transport	
  protocol	
  dependent	
  

•  Network	
  layer	
  func/on	
  with	
  transport	
  layer	
  dependencies	
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Some mechanisms in modern TCP 

•  e.g. NewReno only very briefly mentioned 

•  Appropriate	
  Byte	
  Coun/ng	
  (ABC):	
  
–  Increasing	
  in	
  Conges/on	
  Avoidance	
  mode:	
  common	
  implementa/on	
  (e.g.	
  

Jan’05	
  FreeBSD	
  code):	
  cwnd	
  +=	
  SMSS*SMSS/cwnd	
  for	
  every	
  ACK	
  
(same	
  as	
  cwnd	
  +=	
  1/cwnd	
  if	
  we	
  count	
  segments)	
  
•  Problem:	
  e.g.	
  cwnd	
  =	
  2:	
  2	
  +	
  1/2	
  +	
  1/	
  (2+1/2))	
  =	
  2+0.5+0.4	
  =	
  2.9	
  

thus,	
  cannot	
  send	
  a	
  new	
  packet	
  a^er	
  1	
  RTT	
  
•  Worse	
  with	
  delayed	
  ACKs	
  (cwnd	
  =	
  2.5)	
  
•  Even	
  worse	
  with	
  ACKs	
  for	
  less	
  than	
  1	
  segment	
  (consider	
  1000	
  1-­‐byte	
  ACKs)	
  

	
  à	
  too	
  aggressive!	
  

–  As	
  name	
  suggests,	
  ABC	
  counts	
  bytes;	
  works	
  fine	
  in	
  Conges/on	
  
Avoidance,	
  somewhat	
  limited	
  in	
  Slow	
  Start	
  
(else	
  can	
  create	
  “micro-­‐bursts“)	
  



5 

TCP:	
  Spurious	
  Bmeouts	
  

•  Possible	
  occurrence	
  in	
  e.g.	
  wireless	
  scenarios	
  
(handover):	
  sudden	
  delay	
  spike	
  

•  Can	
  lead	
  to	
  /meout	
  
	
  à	
  slow	
  start	
  
–  But:	
  underlying	
  assump/on:	
  “pipe	
  empty“	
  is	
  wrong!	
  

(“spurious	
  /meout“)	
  
–  Old	
  incoming	
  ACK	
  a^er	
  /meout	
  should	
  be	
  used	
  to	
  

undo	
  the	
  error	
  

•  Several	
  methods	
  proposed	
  
Examples:	
  
–  Eifel	
  Algorithm:	
  use	
  /mestamps	
  op/on	
  to	
  check:	
  

/mestamp	
  in	
  ACK	
  <	
  /me	
  of	
  /meout?	
  
–  DSACK:	
  duplicate	
  arrived	
  
–  F-­‐RTO:	
  check	
  for	
  ACKs	
  that	
  shouldn't	
  arrive	
  a^er	
  

Slow	
  Start	
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TCP:	
  Appropriate	
  Byte	
  CounBng	
  

•  Increasing	
  in	
  Conges/on	
  Avoidance	
  mode:	
  common	
  implementa/on	
  
(e.g.	
  Jan’05	
  FreeBSD	
  code):	
  cwnd	
  +=	
  SMSS*SMSS/cwnd	
  for	
  every	
  ACK	
  
(same	
  as	
  cwnd	
  +=	
  1/cwnd	
  if	
  we	
  count	
  segments)	
  
–  Problem:	
  e.g.	
  cwnd	
  =	
  2:	
  2	
  +	
  1/2	
  +	
  1/	
  (2+1/2))	
  =	
  2+0.5+0.4	
  =	
  2.9	
  

thus,	
  cannot	
  send	
  a	
  new	
  packet	
  a^er	
  1	
  RTT	
  
–  Worse	
  with	
  delayed	
  ACKs	
  (cwnd	
  =	
  2.5)	
  
–  Even	
  worse	
  with	
  ACKs	
  for	
  less	
  than	
  1	
  segment	
  (consider	
  1000	
  1-­‐byte	
  ACKs)	
  

	
  à	
  too	
  aggressive!	
  
	
  

•  Solu/on:	
  Appropriate	
  Byte	
  Coun/ng	
  (ABC)	
  
–  Maintain	
  bytes_acked	
  variable;	
  send	
  segment	
  when	
  threshold	
  exceeded	
  
–  Works	
  in	
  Conges/on	
  Avoidance;	
  but	
  what	
  about	
  Slow	
  Start?	
  

•  Here,	
  ABC	
  +	
  delayed	
  ACKs	
  means	
  that	
  the	
  rate	
  increases	
  in	
  2*SMSS	
  steps	
  
•  If	
  a	
  series	
  of	
  ACKs	
  are	
  dropped,	
  this	
  could	
  be	
  a	
  significant	
  burst	
  (“micro-­‐

burs/ness“);	
  thus,	
  limit	
  of	
  2*SMSS	
  per	
  ACK	
  recommended	
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TCP over Satellite and PEPs 
•  Satellites combine several problems 

–  Long delay 
–  High capacity 
–  Wireless (but usually not noisy (for TCP) because of link layer FEC) 
–  Can be asymmetric (e.g. direct satellite downlink, 56k modem uplink) 

•  Thus, TCP over satellite is a major research topic 
–  Transparent improvements ("Performance Enhancing Proxies") common 
–  Figure: split connection approach: 2a / 2b instead of control loop 1 
–  Many possibilities - e.g. Snoop TCP: monitor + buffer; in case of loss, 

suppress DupACKs and retransmit from local buffer 
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MPTCP 

•  Many hosts are nowadays multihomed 
–  Smartphones (WiFi + 3G), data centers 
–  Why not use both connections at once? 

•  Cannot know where bottleneck is 
–  If it is shared by the two connections, they should 

appear (be as aggressive) as only one connection 
–  MPTCP changes congestion avoidance “increase” 

parameter to “divide” aggression accordingly 
•  but instead of being “½ TCP”, tries to send as much as 

possible over least congested path 
•  Least congested = largest window achieved; hence, increase 

in proportion to window 
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Some mechanisms in modern browsers 

•  WebRTC / rtcweb 
–  Direct UDP communication between browsers (p2p) 

•  Better latency & bandwidth, important for interactive communication (video, audio, 
online games, …) 

•  Data channel (e.g. control data in games, file transfers, ..) uses SCTP in 
userspace (in browser) 

•  Between browsers, there are many middleboxes; several tricks played (ICE / 
STUN / TURN protocols) 

–  Javascript API lets web designer control “peer connections” 
–  Congestion control to be defined; requirements: 

•  Avoid queue: react to delay, yet interoperate with TCP 
•  Detect shared bottlenecks, combine controls of flows 

•  SPDY / HTTP/2.0 
–  Universal encryption, header compression, multi-streaming, .. 
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Packet 2 

 
 
Packet 3 

 
 
Packet 4 

 
 
Packet 1 

Application Level Framing (ALF) 

•  Concept applied in RTP and SCTP 
–  Byte stream (TCP) inefficient when packets are lost 
–  Application may want logical data units (“chunks“) 

Chunk 1 Chunk 2 Chunk 3 Chunk 4 

•  ALF: app chooses packet size = chunk size 
packet 2 lost: no unnecessary data in packet 1, 

use chunks 3 and 4 before retrans. 2 arrives 
 

•  1 ADU (Application Data Unit) = multiple chunks 
=> ALF still more efficient! 
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Unordered delivery & multistreaming 
Concept applied in SCTP, SPDY 

•  Decoupling of reliable and ordered delivery 
–  Unordered delivery: eliminate Head-Of-Line (HOL) 

blocking delay 

Chunk 
2 

Chunk 
3 

Chunk 
4 

Chunk 
1 

TCP receiver buffer 

App waits in vain!  

•  Support for multiple data streams 
(per-stream ordered delivery) 
-  Stream sequence number (SSN) preserves order 
within streams 

-  no order preserved between streams 
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LEDBAT 
•  Try to send when others don’t 

–  For low-priority traffic that should not get in the way of other 
applications 

–  Growing (assumption: queuing) delay = early congestion signal 
–  Possible benefit: low delay 
–  Encapsulation (how to embed in existing protocols) not (yet?) defined; 

implemented over UDP in BitTorrent 

For Review Only
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TCP without changing its header format; this would facilitate
their deployment in the Internet. The schemes in the third
category are, by design, supposed to be especially easy to
deploy because they only describe a way in which existing
transport protocols are used. Finally, mechanisms in the last
category also require changes to equipment along the path,
which can greatly complicate their deployment.

An LBE service can also be implemented by means of
lower-layer (e.g., network layer) techniques only, without any
involvement of the endpoints. There has been a substantial
amount of work related to LBE mechanisms below the trans-
port layer; for instance, there is a Diffserv-based, Lower-Effort
per-domain behavior [6], and similar proposals have been
described elsewhere [7]–[9]. Such proposals do not require,
in principle, any changes to end-hosts but may not always
be easily deployed over the Internet at large; moreover, they
can be viewed as “orthogonal” to transport-layer and upper-
layer LBE mechanisms as described above. Other network-
level solutions aiming at giving lower priority to “bandwidth
hogs”, like traffic shaping or scheduling, and based on e.g.
deep-packet inspection or traffic-volume accounting, are al-
ready deployed in some networks [10]. Besides, the IETF
Congestion Exposure (CONEX) working group2 is developing
a network-layer mechanism which can incentivize the usage
of LBE-like applications and/or of LBE-like transports [11].
Such work is outside the scope of this paper.

II. DELAY-BASED TRANSPORT PROTOCOLS

It is wrong to generally equate “little impact on standard
TCP” with “small sending rate”. Without Explicit Congestion
Notification (ECN) support [12], standard TCP will normally
increase its congestion window (and effective sending rate)
until a queue overflows, causing one or more packets to be
dropped and the effective rate to be reduced. A protocol that
stops increasing the rate before this event happens can, in
principle, attain a better performance than standard TCP. This
can be achieved by performing delay-based congestion control
at the sender, i.e., monitoring end-to-end delays and using such
delay measurements to control the sending rate.

Figure 1 schematically depicts the basic principles of a
delay-based LBE transport. The sending rate for a delay-based
LBE flow, in absence of other flows sharing the bottleneck,
is illustrated by Fig. 1a. The sender tries to send “as fast as
possible” while monitoring the end-to-end delay (correspond-
ing to some amount of buffered packets, shown as gray areas
in the figure), and lowers its rate as soon as it detects that
the backlog of packets in the end-to-end path exceeds some
predefined value. By avoiding to completely fill the buffers
by itself, the delay-based flow keeps the latency low for any
other flow that may start sending data after the former.

Figure 1b shows the delay-based LBE flow competing
with a (long-lived) non-LBE flow using standard, loss-based
TCP. In the presence of another, non-LBE flow, the LBE
sender injects data into the network only when the delay
due to backlogged packets is below the predefined value, and
decreases its sending rate when the other flow increases its

2http://tools.ietf.org/wg/conex

link capacity

time

queue backlogbuffering

(a) Sending rate of a delay-based flow: ideal case.

link capacity

time

volume sent by a delay-based flow

buffering

(b) Coexistence of an LBE flow with a non-LBE one.

Fig. 1. Delay-based congestion control.

own rate; this corresponds to the gray areas in Fig. 1b. When
the backlog gets larger than the threshold value, the LBE
flow reduces its sending rate to a very low value, to avoid
contributing to delay.

A. TCP Vegas
TCP Vegas [3] is one of the first protocols that was known

to have a smaller sending rate than standard TCP when both
protocols share a bottleneck [13]—yet, it was designed to
achieve more, not less, throughput than standard TCP3. Indeed,
when TCP Vegas is the only congestion control algorithm used
by flows going through the bottleneck, its throughput is greater
than the throughput of standard TCP. However, depending
on the bottleneck queue length, TCP Vegas itself can be
starved by standard TCP flows. This can be remedied to some
degree4 by the Random Early Detection (RED) Active Queue
Management mechanism [21]. Vegas linearly increases or
decreases the sending rate, based on the difference between the
expected throughput and the actual throughput. The estimation
is based on RTT measurements.

The congestion-avoidance behavior is the protocol’s most
important feature in terms of historical relevance as well as

3In fact, delay-based congestion control is at the basis of several proposals
that aim at adapting TCP’s congestion avoidance to very high-speed networks.
Some of these proposals, like Compound TCP [14] and TCP Illinois [15],
are hybrid loss- and delay-based mechanisms, whereas others (e.g., FAST
TCP [16], NewVegas [17], or CODE TCP [18]) are variants of Vegas based
primarily on delays.

4Though not specific to Vegas, there are also proposals, such as [19], [20],
aiming at improving the coexistence of loss-based and delay-based congestion-
controlled flows.
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category are, by design, supposed to be especially easy to
deploy because they only describe a way in which existing
transport protocols are used. Finally, mechanisms in the last
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flow reduces its sending rate to a very low value, to avoid
contributing to delay.
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TCP Vegas [3] is one of the first protocols that was known

to have a smaller sending rate than standard TCP when both
protocols share a bottleneck [13]—yet, it was designed to
achieve more, not less, throughput than standard TCP3. Indeed,
when TCP Vegas is the only congestion control algorithm used
by flows going through the bottleneck, its throughput is greater
than the throughput of standard TCP. However, depending
on the bottleneck queue length, TCP Vegas itself can be
starved by standard TCP flows. This can be remedied to some
degree4 by the Random Early Detection (RED) Active Queue
Management mechanism [21]. Vegas linearly increases or
decreases the sending rate, based on the difference between the
expected throughput and the actual throughput. The estimation
is based on RTT measurements.

The congestion-avoidance behavior is the protocol’s most
important feature in terms of historical relevance as well as

3In fact, delay-based congestion control is at the basis of several proposals
that aim at adapting TCP’s congestion avoidance to very high-speed networks.
Some of these proposals, like Compound TCP [14] and TCP Illinois [15],
are hybrid loss- and delay-based mechanisms, whereas others (e.g., FAST
TCP [16], NewVegas [17], or CODE TCP [18]) are variants of Vegas based
primarily on delays.

4Though not specific to Vegas, there are also proposals, such as [19], [20],
aiming at improving the coexistence of loss-based and delay-based congestion-
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