
Department of Informatics
Networks and Distributed Systems (ND) group

INF 3190
Summary lecture

Michael Welzl

2

Pensum: forelesninger!

•  “Pensum defineres av forelesningene og gruppetimene
og består av forelesningsnotatene, oppgavesettene,
oppgaveregningene og annet materiale som blir
tilgjengelig på nettsidene i løpet av semesteret. Det er
altså ingen lærebok, men for de som er interessert kan
følgende anbefales som ekstralitteratur:”

•  First in list: Tanenbaum
–  What was talked about in lectures but is not covered

in this book?
–  What follows are examples, it’s not a complete list!

3

Path	
 MTU	
 Discovery:	

only	
 old	
 version	
 in	
 Tanenbaum	
 (RFC	
 1191)	

•  (IP)	
 fragmenta/on	
 =	
 inefficient	

–  But	
 small	
 packets	
 have	
 large	
 header	
 overhead	

•  Path	
 MTU	
 Discovery:	
 determine	
 the	
 largest	
 packet	
 that	
 does	

not	
 get	
 fragmented	

–  originally	
 (RFC	
 1191,	
 1990):	
 start	
 large,	
 reduce	
 upon	
 recep/on	
 of	
 ICMP	

message	
 è	
 black	
 hole	
 problem	
 if	
 ICMP	
 messages	
 are	
 filtered	

–  now	
 (RFC	
 4821,	
 2007):	
 start	
 small,	
 increase	
 as	
 long	
 as	
 transport	
 layer	

ACKs	
 arrive	
 è	
 transport	
 protocol	
 dependent	

•  Network	
 layer	
 func/on	
 with	
 transport	
 layer	
 dependencies	

4

Some mechanisms in modern TCP

•  e.g. NewReno only very briefly mentioned

•  Appropriate	
 Byte	
 Coun/ng	
 (ABC):	

–  Increasing	
 in	
 Conges/on	
 Avoidance	
 mode:	
 common	
 implementa/on	
 (e.g.	

Jan’05	
 FreeBSD	
 code):	
 cwnd	
 +=	
 SMSS*SMSS/cwnd	
 for	
 every	
 ACK	

(same	
 as	
 cwnd	
 +=	
 1/cwnd	
 if	
 we	
 count	
 segments)	

•  Problem:	
 e.g.	
 cwnd	
 =	
 2:	
 2	
 +	
 1/2	
 +	
 1/	
 (2+1/2))	
 =	
 2+0.5+0.4	
 =	
 2.9	

thus,	
 cannot	
 send	
 a	
 new	
 packet	
 a^er	
 1	
 RTT	

•  Worse	
 with	
 delayed	
 ACKs	
 (cwnd	
 =	
 2.5)	

•  Even	
 worse	
 with	
 ACKs	
 for	
 less	
 than	
 1	
 segment	
 (consider	
 1000	
 1-­‐byte	
 ACKs)	

	
 à	
 too	
 aggressive!	

–  As	
 name	
 suggests,	
 ABC	
 counts	
 bytes;	
 works	
 fine	
 in	
 Conges/on	

Avoidance,	
 somewhat	
 limited	
 in	
 Slow	
 Start	

(else	
 can	
 create	
 “micro-­‐bursts“)	

5

TCP:	
 Spurious	
 Bmeouts	

•  Possible	
 occurrence	
 in	
 e.g.	
 wireless	
 scenarios	

(handover):	
 sudden	
 delay	
 spike	

•  Can	
 lead	
 to	
 /meout	

	
 à	
 slow	
 start	

–  But:	
 underlying	
 assump/on:	
 “pipe	
 empty“	
 is	
 wrong!	

(“spurious	
 /meout“)	

–  Old	
 incoming	
 ACK	
 a^er	
 /meout	
 should	
 be	
 used	
 to	

undo	
 the	
 error	

•  Several	
 methods	
 proposed	

Examples:	

–  Eifel	
 Algorithm:	
 use	
 /mestamps	
 op/on	
 to	
 check:	

/mestamp	
 in	
 ACK	
 <	
 /me	
 of	
 /meout?	

–  DSACK:	
 duplicate	
 arrived	

–  F-­‐RTO:	
 check	
 for	
 ACKs	
 that	
 shouldn't	
 arrive	
 a^er	

Slow	
 Start	

6

TCP:	
 Appropriate	
 Byte	
 CounBng	

•  Increasing	
 in	
 Conges/on	
 Avoidance	
 mode:	
 common	
 implementa/on	

(e.g.	
 Jan’05	
 FreeBSD	
 code):	
 cwnd	
 +=	
 SMSS*SMSS/cwnd	
 for	
 every	
 ACK	

(same	
 as	
 cwnd	
 +=	
 1/cwnd	
 if	
 we	
 count	
 segments)	

–  Problem:	
 e.g.	
 cwnd	
 =	
 2:	
 2	
 +	
 1/2	
 +	
 1/	
 (2+1/2))	
 =	
 2+0.5+0.4	
 =	
 2.9	

thus,	
 cannot	
 send	
 a	
 new	
 packet	
 a^er	
 1	
 RTT	

–  Worse	
 with	
 delayed	
 ACKs	
 (cwnd	
 =	
 2.5)	

–  Even	
 worse	
 with	
 ACKs	
 for	
 less	
 than	
 1	
 segment	
 (consider	
 1000	
 1-­‐byte	
 ACKs)	

	
 à	
 too	
 aggressive!	

	

•  Solu/on:	
 Appropriate	
 Byte	
 Coun/ng	
 (ABC)	

–  Maintain	
 bytes_acked	
 variable;	
 send	
 segment	
 when	
 threshold	
 exceeded	

–  Works	
 in	
 Conges/on	
 Avoidance;	
 but	
 what	
 about	
 Slow	
 Start?	

•  Here,	
 ABC	
 +	
 delayed	
 ACKs	
 means	
 that	
 the	
 rate	
 increases	
 in	
 2*SMSS	
 steps	

•  If	
 a	
 series	
 of	
 ACKs	
 are	
 dropped,	
 this	
 could	
 be	
 a	
 significant	
 burst	
 (“micro-­‐

burs/ness“);	
 thus,	
 limit	
 of	
 2*SMSS	
 per	
 ACK	
 recommended	

7

TCP over Satellite and PEPs
•  Satellites combine several problems

–  Long delay
–  High capacity
–  Wireless (but usually not noisy (for TCP) because of link layer FEC)
–  Can be asymmetric (e.g. direct satellite downlink, 56k modem uplink)

•  Thus, TCP over satellite is a major research topic
–  Transparent improvements ("Performance Enhancing Proxies") common
–  Figure: split connection approach: 2a / 2b instead of control loop 1
–  Many possibilities - e.g. Snoop TCP: monitor + buffer; in case of loss,

suppress DupACKs and retransmit from local buffer

8

MPTCP

•  Many hosts are nowadays multihomed
–  Smartphones (WiFi + 3G), data centers
–  Why not use both connections at once?

•  Cannot know where bottleneck is
–  If it is shared by the two connections, they should

appear (be as aggressive) as only one connection
–  MPTCP changes congestion avoidance “increase”

parameter to “divide” aggression accordingly
•  but instead of being “½ TCP”, tries to send as much as

possible over least congested path
•  Least congested = largest window achieved; hence, increase

in proportion to window

9

Some mechanisms in modern browsers

•  WebRTC / rtcweb
–  Direct UDP communication between browsers (p2p)

•  Better latency & bandwidth, important for interactive communication (video, audio,
online games, …)

•  Data channel (e.g. control data in games, file transfers, ..) uses SCTP in
userspace (in browser)

•  Between browsers, there are many middleboxes; several tricks played (ICE /
STUN / TURN protocols)

–  Javascript API lets web designer control “peer connections”
–  Congestion control to be defined; requirements:

•  Avoid queue: react to delay, yet interoperate with TCP
•  Detect shared bottlenecks, combine controls of flows

•  SPDY / HTTP/2.0
–  Universal encryption, header compression, multi-streaming, ..

10

Packet 2

Packet 3

Packet 4

Packet 1

Application Level Framing (ALF)

•  Concept applied in RTP and SCTP
–  Byte stream (TCP) inefficient when packets are lost
–  Application may want logical data units (“chunks“)

Chunk 1 Chunk 2 Chunk 3 Chunk 4

•  ALF: app chooses packet size = chunk size
packet 2 lost: no unnecessary data in packet 1,

use chunks 3 and 4 before retrans. 2 arrives

•  1 ADU (Application Data Unit) = multiple chunks
=> ALF still more efficient!

11

Unordered delivery & multistreaming
Concept applied in SCTP, SPDY

•  Decoupling of reliable and ordered delivery
–  Unordered delivery: eliminate Head-Of-Line (HOL)

blocking delay

Chunk
2

Chunk
3

Chunk
4

Chunk
1

TCP receiver buffer

App waits in vain!

•  Support for multiple data streams
(per-stream ordered delivery)
-  Stream sequence number (SSN) preserves order
within streams

-  no order preserved between streams

12

LEDBAT
•  Try to send when others don’t

–  For low-priority traffic that should not get in the way of other
applications

–  Growing (assumption: queuing) delay = early congestion signal
–  Possible benefit: low delay
–  Encapsulation (how to embed in existing protocols) not (yet?) defined;

implemented over UDP in BitTorrent

For Review Only

2

TCP without changing its header format; this would facilitate
their deployment in the Internet. The schemes in the third
category are, by design, supposed to be especially easy to
deploy because they only describe a way in which existing
transport protocols are used. Finally, mechanisms in the last
category also require changes to equipment along the path,
which can greatly complicate their deployment.

An LBE service can also be implemented by means of
lower-layer (e.g., network layer) techniques only, without any
involvement of the endpoints. There has been a substantial
amount of work related to LBE mechanisms below the trans-
port layer; for instance, there is a Diffserv-based, Lower-Effort
per-domain behavior [6], and similar proposals have been
described elsewhere [7]–[9]. Such proposals do not require,
in principle, any changes to end-hosts but may not always
be easily deployed over the Internet at large; moreover, they
can be viewed as “orthogonal” to transport-layer and upper-
layer LBE mechanisms as described above. Other network-
level solutions aiming at giving lower priority to “bandwidth
hogs”, like traffic shaping or scheduling, and based on e.g.
deep-packet inspection or traffic-volume accounting, are al-
ready deployed in some networks [10]. Besides, the IETF
Congestion Exposure (CONEX) working group2 is developing
a network-layer mechanism which can incentivize the usage
of LBE-like applications and/or of LBE-like transports [11].
Such work is outside the scope of this paper.

II. DELAY-BASED TRANSPORT PROTOCOLS

It is wrong to generally equate “little impact on standard
TCP” with “small sending rate”. Without Explicit Congestion
Notification (ECN) support [12], standard TCP will normally
increase its congestion window (and effective sending rate)
until a queue overflows, causing one or more packets to be
dropped and the effective rate to be reduced. A protocol that
stops increasing the rate before this event happens can, in
principle, attain a better performance than standard TCP. This
can be achieved by performing delay-based congestion control
at the sender, i.e., monitoring end-to-end delays and using such
delay measurements to control the sending rate.

Figure 1 schematically depicts the basic principles of a
delay-based LBE transport. The sending rate for a delay-based
LBE flow, in absence of other flows sharing the bottleneck,
is illustrated by Fig. 1a. The sender tries to send “as fast as
possible” while monitoring the end-to-end delay (correspond-
ing to some amount of buffered packets, shown as gray areas
in the figure), and lowers its rate as soon as it detects that
the backlog of packets in the end-to-end path exceeds some
predefined value. By avoiding to completely fill the buffers
by itself, the delay-based flow keeps the latency low for any
other flow that may start sending data after the former.

Figure 1b shows the delay-based LBE flow competing
with a (long-lived) non-LBE flow using standard, loss-based
TCP. In the presence of another, non-LBE flow, the LBE
sender injects data into the network only when the delay
due to backlogged packets is below the predefined value, and
decreases its sending rate when the other flow increases its

2http://tools.ietf.org/wg/conex

link capacity

time

queue backlogbuffering

(a) Sending rate of a delay-based flow: ideal case.

link capacity

time

volume sent by a delay-based flow

buffering

(b) Coexistence of an LBE flow with a non-LBE one.

Fig. 1. Delay-based congestion control.

own rate; this corresponds to the gray areas in Fig. 1b. When
the backlog gets larger than the threshold value, the LBE
flow reduces its sending rate to a very low value, to avoid
contributing to delay.

A. TCP Vegas
TCP Vegas [3] is one of the first protocols that was known

to have a smaller sending rate than standard TCP when both
protocols share a bottleneck [13]—yet, it was designed to
achieve more, not less, throughput than standard TCP3. Indeed,
when TCP Vegas is the only congestion control algorithm used
by flows going through the bottleneck, its throughput is greater
than the throughput of standard TCP. However, depending
on the bottleneck queue length, TCP Vegas itself can be
starved by standard TCP flows. This can be remedied to some
degree4 by the Random Early Detection (RED) Active Queue
Management mechanism [21]. Vegas linearly increases or
decreases the sending rate, based on the difference between the
expected throughput and the actual throughput. The estimation
is based on RTT measurements.

The congestion-avoidance behavior is the protocol’s most
important feature in terms of historical relevance as well as

3In fact, delay-based congestion control is at the basis of several proposals
that aim at adapting TCP’s congestion avoidance to very high-speed networks.
Some of these proposals, like Compound TCP [14] and TCP Illinois [15],
are hybrid loss- and delay-based mechanisms, whereas others (e.g., FAST
TCP [16], NewVegas [17], or CODE TCP [18]) are variants of Vegas based
primarily on delays.

4Though not specific to Vegas, there are also proposals, such as [19], [20],
aiming at improving the coexistence of loss-based and delay-based congestion-
controlled flows.

Page 2 of 10IEEE Communications Surveys and Tutorials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

2

TCP without changing its header format; this would facilitate
their deployment in the Internet. The schemes in the third
category are, by design, supposed to be especially easy to
deploy because they only describe a way in which existing
transport protocols are used. Finally, mechanisms in the last
category also require changes to equipment along the path,
which can greatly complicate their deployment.

An LBE service can also be implemented by means of
lower-layer (e.g., network layer) techniques only, without any
involvement of the endpoints. There has been a substantial
amount of work related to LBE mechanisms below the trans-
port layer; for instance, there is a Diffserv-based, Lower-Effort
per-domain behavior [6], and similar proposals have been
described elsewhere [7]–[9]. Such proposals do not require,
in principle, any changes to end-hosts but may not always
be easily deployed over the Internet at large; moreover, they
can be viewed as “orthogonal” to transport-layer and upper-
layer LBE mechanisms as described above. Other network-
level solutions aiming at giving lower priority to “bandwidth
hogs”, like traffic shaping or scheduling, and based on e.g.
deep-packet inspection or traffic-volume accounting, are al-
ready deployed in some networks [10]. Besides, the IETF
Congestion Exposure (CONEX) working group2 is developing
a network-layer mechanism which can incentivize the usage
of LBE-like applications and/or of LBE-like transports [11].
Such work is outside the scope of this paper.

II. DELAY-BASED TRANSPORT PROTOCOLS

It is wrong to generally equate “little impact on standard
TCP” with “small sending rate”. Without Explicit Congestion
Notification (ECN) support [12], standard TCP will normally
increase its congestion window (and effective sending rate)
until a queue overflows, causing one or more packets to be
dropped and the effective rate to be reduced. A protocol that
stops increasing the rate before this event happens can, in
principle, attain a better performance than standard TCP. This
can be achieved by performing delay-based congestion control
at the sender, i.e., monitoring end-to-end delays and using such
delay measurements to control the sending rate.

Figure 1 schematically depicts the basic principles of a
delay-based LBE transport. The sending rate for a delay-based
LBE flow, in absence of other flows sharing the bottleneck,
is illustrated by Fig. 1a. The sender tries to send “as fast as
possible” while monitoring the end-to-end delay (correspond-
ing to some amount of buffered packets, shown as gray areas
in the figure), and lowers its rate as soon as it detects that
the backlog of packets in the end-to-end path exceeds some
predefined value. By avoiding to completely fill the buffers
by itself, the delay-based flow keeps the latency low for any
other flow that may start sending data after the former.

Figure 1b shows the delay-based LBE flow competing
with a (long-lived) non-LBE flow using standard, loss-based
TCP. In the presence of another, non-LBE flow, the LBE
sender injects data into the network only when the delay
due to backlogged packets is below the predefined value, and
decreases its sending rate when the other flow increases its

2http://tools.ietf.org/wg/conex

link capacity

time

queue backlogbuffering

(a) Sending rate of a delay-based flow: ideal case.

link capacity

time

volume sent by a delay-based flow

buffering

(b) Coexistence of an LBE flow with a non-LBE one.

Fig. 1. Delay-based congestion control.

own rate; this corresponds to the gray areas in Fig. 1b. When
the backlog gets larger than the threshold value, the LBE
flow reduces its sending rate to a very low value, to avoid
contributing to delay.

A. TCP Vegas
TCP Vegas [3] is one of the first protocols that was known

to have a smaller sending rate than standard TCP when both
protocols share a bottleneck [13]—yet, it was designed to
achieve more, not less, throughput than standard TCP3. Indeed,
when TCP Vegas is the only congestion control algorithm used
by flows going through the bottleneck, its throughput is greater
than the throughput of standard TCP. However, depending
on the bottleneck queue length, TCP Vegas itself can be
starved by standard TCP flows. This can be remedied to some
degree4 by the Random Early Detection (RED) Active Queue
Management mechanism [21]. Vegas linearly increases or
decreases the sending rate, based on the difference between the
expected throughput and the actual throughput. The estimation
is based on RTT measurements.

The congestion-avoidance behavior is the protocol’s most
important feature in terms of historical relevance as well as

3In fact, delay-based congestion control is at the basis of several proposals
that aim at adapting TCP’s congestion avoidance to very high-speed networks.
Some of these proposals, like Compound TCP [14] and TCP Illinois [15],
are hybrid loss- and delay-based mechanisms, whereas others (e.g., FAST
TCP [16], NewVegas [17], or CODE TCP [18]) are variants of Vegas based
primarily on delays.

4Though not specific to Vegas, there are also proposals, such as [19], [20],
aiming at improving the coexistence of loss-based and delay-based congestion-
controlled flows.

Page 2 of 10IEEE Communications Surveys and Tutorials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

