
Slides from INF3331 lectures
- Bash programming

Ola Skavhaug, Joakim Sundnes and Hans Petter Langtangen

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

August 2011

Slides from INF3331 lectures- Bash programming – p. 1/48

c© www.simula.no/˜hpl

Basic Bash programming

Basic Bash programming – p. 2/48

c© www.simula.no/˜hpl

Overview of Unix shells

The original scripting languages were (extensions of) command
interpreters in operating systems

Primary example: Unix shells

Bourne shell (sh) was the first major shell

C and TC shell (csh and tcsh) had improved command
interpreters, but were less popular than Bourne shell for programming

Bourne Again shell (Bash/bash): GNU/FSF improvement of Bourne
shell

Other Bash-like shells: Korn shell (ksh), Z shell (zsh)

Bash is the dominating Unix shell today

Basic Bash programming – p. 3/48

c© www.simula.no/˜hpl

Why learn Bash?

Learning Bash means learning Unix

Learning Bash means learning the roots of scripting
(Bourne shell is a subset of Bash)

Shell scripts, especially in Bourne shell and Bash, are frequently
encountered on Unix systems

Bash is widely available (open source) and the dominating command
interpreter and scripting language on today’s Unix systems

Basic Bash programming – p. 4/48

c© www.simula.no/˜hpl

Why learn Bash? (2)

Shell scripts evolve naturally from a workflow:
1. A sequence of commands you use often are placed in a file
2. Command-line options are introduced to enable different options

to be passed to the commands
3. Introducing variables, if tests, loops enables more complex

program flow
4. At some point pre- and postprocessing becomes too advanced

for bash, at which point (parts of) the script should be ported to
Python or other tools

Shell scripts are often used to glue more advanced scripts in Perl and
Python

Basic Bash programming – p. 5/48

c© www.simula.no/˜hpl

More information

man bash

“Introduction to and overview of Unix” link in doc.html

Basic Bash programming – p. 6/48

c© www.simula.no/˜hpl

Scientific Hello World script

Let’s start with a script writing "Hello, World!"

Scientific computing extension: compute the sine of a number as well

The script (hw.sh) should be run like this:

./hw.sh 3.4

or (less common):

bash hw.sh 3.4

Output:
Hello, World! sin(3.4)=-0.255541102027

Can be done with a single line of code:
echo "Hello, World! sin($1)=$(echo "s($1)" | bc -l)"

Basic Bash programming – p. 7/48

c© www.simula.no/˜hpl

Purpose of this script

Demonstrate

how to read a command-line argument

how to call a math (sine) function

how to work with variables

how to print text and numbers

Basic Bash programming – p. 8/48

c© www.simula.no/˜hpl

Remark

We use plain Bourne shell (/bin/sh) when special features of Bash
(/bin/bash) are not needed

Most of our examples can in fact be run under Bourne shell (and of
course also Bash)

Note that Bourne shell (/bin/sh) is usually just a link to Bash
(/bin/bash) on Linux systems
(Bourne shell is proprietary code, whereas Bash is open source)

Basic Bash programming – p. 9/48

c© www.simula.no/˜hpl

The code, in extended version

File hw.sh:

#!/bin/sh
r=$1 # store first command-line argument in r
s=‘echo "s($r)" | bc -l‘

print to the screen:
echo "Hello, World! sin($r)=$s"

Basic Bash programming – p. 10/48

c© www.simula.no/˜hpl

Comments

The first line specifies the interpreter of the script (here /bin/sh,
could also have used /bin/bash)

The command-line variables are available as the script variables

$1 $2 $3 $4 and so on

Variables are initialized as
r=$1

while the value of r requires a dollar prefix:

my_new_variable=$r # copy r to my_new_variable

Basic Bash programming – p. 11/48

c© www.simula.no/˜hpl

Bash and math

Bourne shell and Bash have very little built-in math, we therefore
need to use bc, Perl or Awk to do the math

s=‘echo "s($r)" | bc -l‘
s=‘perl -e ’$s=sin($ARGV[0]); print $s;’ $r‘
s=‘awk "BEGIN { s=sin($r); print s;}"‘
or shorter:
s=‘awk "BEGIN {print sin($r)}"‘

Back quotes means executing the command inside the quotes and
assigning the output to the variable on the left-hand-side

some_variable=‘some Unix command‘

alternative notation:
some_variable=$(some Unix command)

Basic Bash programming – p. 12/48

c© www.simula.no/˜hpl

The bc program

bc = interactive calculator

Documentation: man bc

bc -l means bc with math library

Note: sin is s, cos is c, exp is e

echo sends a text to be interpreted by bc and bc responds with
output (which we assign to s)

variable=‘echo "math expression" | bc -l‘

Basic Bash programming – p. 13/48

c© www.simula.no/˜hpl

Printing

The echo command is used for writing:

echo "Hello, World! sin($r)=$s"

and variables can be inserted in the text string
(variable interpolation)

Bash also has a printf function for format control:

printf "Hello, World! sin(%g)=%12.5e\n" $r $s

cat is usually used for printing multi-line text
(see next slide)

Basic Bash programming – p. 14/48

c© www.simula.no/˜hpl

Convenient debugging tool: -x

Each source code line is printed prior to its execution of you -x as
option to /bin/sh or /bin/bash

Either in the header
#!/bin/sh -x

or on the command line:
unix> /bin/sh -x hw.sh
unix> sh -x hw.sh
unix> bash -x hw.sh

Very convenient during debugging

Basic Bash programming – p. 15/48

c© www.simula.no/˜hpl

File reading and writing

Bourne shell and Bash are not much used for file reading and
manipulation; usually one calls up Sed, Awk, Perl or Python to do file
manipulation

File writing is efficiently done by ’here documents’:

cat > myfile <<EOF
multi-line text
can now be inserted here,
and variable interpolation
a la $myvariable is
supported. The final EOF must
start in column 1 of the
script file.
EOF

Basic Bash programming – p. 16/48

c© www.simula.no/˜hpl

Simulation and visualization script

Typical application in numerical simulation:
run a simulation program
run a visualization program and produce graphs

Programs are supposed to run in batch

Putting the two commands in a file, with some glue, makes a
classical Unix script

Basic Bash programming – p. 17/48

c© www.simula.no/˜hpl

Setting default parameters

#!/bin/sh

pi=3.14159
m=1.0; b=0.7; c=5.0; func="y"; A=5.0;
w=‘echo 2*$pi | bc‘
y0=0.2; tstop=30.0; dt=0.05; case="tmp1"
screenplot=1

Basic Bash programming – p. 18/48

c© www.simula.no/˜hpl

Parsing command-line options

read variables from the command line, one by one:
while [$# -gt 0] # $# = no of command-line args.
do

option = $1; # load command-line arg into option
shift; # eat currently first command-line arg
case "$option" in

-m)
m=$1; shift; ;; # load next command-line arg

-b)
b=$1; shift; ;;

...
*)

echo "$0: invalid option \"$option\""; exit ;;
esac

done

Basic Bash programming – p. 19/48

c© www.simula.no/˜hpl

Alternative to case: if

case is standard when parsing command-line arguments in Bash, but
if-tests can also be used. Consider

case "$option" in
-m)

m=$1; shift; ;; # load next command-line arg
-b)

b=$1; shift; ;;
*)

echo "$0: invalid option \"$option\""; exit ;;
esac

versus

if ["$option" == "-m"]; then
m=$1; shift; # load next command-line arg

elif ["$option" == "-b"]; then
b=$1; shift;

else
echo "$0: invalid option \"$option\""; exit

fi

Basic Bash programming – p. 20/48

c© www.simula.no/˜hpl

Creating a subdirectory

dir=$case
check if $dir is a directory:
if [-d $dir]

yes, it is; remove this directory tree
then
rm -r $dir

fi
mkdir $dir # create new directory $dir
cd $dir # move to $dir

the ’then’ statement can also appear on the 1st line:
if [-d $dir]; then

rm -r $dir
fi

another form of if-tests:
if test -d $dir; then

rm -r $dir
fi

and a shortcut:
[-d $dir] && rm -r $dir
test -d $dir && rm -r $dir

Basic Bash programming – p. 21/48

c© www.simula.no/˜hpl

Writing an input file

’Here document’ for multi-line output:

write to $case.i the lines that appear between
the EOF symbols:

cat > $case.i <<EOF
$m
$b
$c
$func
$A
$w
$y0
$tstop
$dt

EOF

Basic Bash programming – p. 22/48

c© www.simula.no/˜hpl

Running the simulation

Stand-alone programs can be run by just typing the name of the
program

If the program reads data from standard input, we can put the input in
a file and redirect input :

oscillator < $case.i

Can check for successful execution:
the shell variable $? is 0 if last command
was successful, otherwise $? != 0

if ["$?" != "0"]; then
echo "running oscillator failed"; exit 1

fi

exit n sets $? to n

Basic Bash programming – p. 23/48

c© www.simula.no/˜hpl

Remark (1)

Variables can in Bash be integers, strings or arrays

For safety, declare the type of a variable if it is not a string:

declare -i i # i is an integer
declare -a A # A is an array

Basic Bash programming – p. 24/48

c© www.simula.no/˜hpl

Remark (2)

Comparison of two integers use a syntax different comparison of two
strings:

if [$i -lt 10]; then # integer comparison
if ["$name" == "10"]; then # string comparison

Unless you have declared a variable to be an integer, assume that all
variables are strings and use double quotes (strings) when
comparing variables in an if test

if ["$?" != "0"]; then # this is safe
if [$? != 0]; then # might be unsafe

Basic Bash programming – p. 25/48

c© www.simula.no/˜hpl

Making plots

Make Gnuplot script:

echo "set title ’$case: m=$m ...’" > $case.gnuplot
...
contiune writing with a here document:
cat >> $case.gnuplot <<EOF
set size ratio 0.3 1.5, 1.0;
...
plot ’sim.dat’ title ’y(t)’ with lines;
...
EOF

Run Gnuplot:

gnuplot -geometry 800x200 -persist $case.gnuplot
if ["$?" != "0"]; then
echo "running gnuplot failed"; exit 1

fi

Basic Bash programming – p. 26/48

c© www.simula.no/˜hpl

Some common tasks in Bash

file writing

for-loops

running an application

pipes

writing functions

file globbing, testing file types

copying and renaming files, creating and moving to directories,
creating directory paths, removing files and directories

directory tree traversal

packing directory trees

Basic Bash programming – p. 27/48

c© www.simula.no/˜hpl

File writing

outfilename="myprog2.cpp"

append multi-line text (here document):
cat >> $filename <<EOF
/*

This file, "$outfilename", is a version
of "$infilename" where each line is numbered.

*/
EOF

other applications of cat:
cat myfile # write myfile to the screen
cat myfile > yourfile # write myfile to yourfile
cat myfile >> yourfile # append myfile to yourfile
cat myfile | wc # send myfile as input to wc

Basic Bash programming – p. 28/48

c© www.simula.no/˜hpl

For-loops

The for element in list construction:
files=‘/bin/ls *.tmp‘
we use /bin/ls in case ls is aliased

for file in $files
do
echo removing $file
rm -f $file

done

Traverse command-line arguments:

for arg; do
do something with $arg

done

or full syntax; command-line args are stored in $@
for arg in $@; do
do something with $arg

done

Basic Bash programming – p. 29/48

c© www.simula.no/˜hpl

Counters

Declare an integer counter:

declare -i counter
counter=0
arithmetic expressions must appear inside (())
((counter++))
echo $counter # yields 1

For-loop with counter:

declare -i n; n=1
for arg in $@; do
echo "command-line argument no. $n is <$arg>"
((n++))

done

Basic Bash programming – p. 30/48

c© www.simula.no/˜hpl

C-style for-loops

declare -i i
for ((i=0; i<$n; i++)); do

echo $c
done

Basic Bash programming – p. 31/48

c© www.simula.no/˜hpl

Example: bundle files

Pack a series of files into one file

Executing this single file as a Bash script packs out all the individual
files again (!)

Usage:

bundle file1 file2 file3 > onefile # pack
bash onefile # unpack

Writing bundle is easy:

#/bin/sh
for i in $@; do

echo "echo unpacking file $i"
echo "cat > $i <<EOF"
cat $i
echo "EOF"

done

Basic Bash programming – p. 32/48

c© www.simula.no/˜hpl

The bundle output file

Consider 2 fake files; file1
Hello, World!
No sine computations today

and file2
1.0 2.0 4.0
0.1 0.2 0.4

Running bundle file1 file2 yields the output

echo unpacking file file1
cat > file1 <<EOF
Hello, World!
No sine computations today
EOF
echo unpacking file file2
cat > file2 <<EOF
1.0 2.0 4.0
0.1 0.2 0.4
EOF

Basic Bash programming – p. 33/48

c© www.simula.no/˜hpl

Running an application

Running in the foreground:

cmd="myprog -c file.1 -p -f -q";
$cmd < my_input_file

output is directed to the file res
$cmd < my_input_file > res

process res file by Sed, Awk, Perl or Python

Running in the background:

myprog -c file.1 -p -f -q < my_input_file &

or stop a foreground job with Ctrl-Z and then type bg

Basic Bash programming – p. 34/48

c© www.simula.no/˜hpl

Pipes

Output from one command can be sent as input to another command
via a pipe

send files with size to sort -rn
(reverse numerical sort) to get a list
of files sorted after their sizes:

/bin/ls -s | sort -r

cat $case.i | oscillator
is the same as
oscillator < $case.i

Make a new application: sort all files in a directory tree root, with
the largest files appearing first, and equip the output with paging
functionality:

du -a root | sort -rn | less

Basic Bash programming – p. 35/48

c© www.simula.no/˜hpl

Numerical expressions

Numerical expressions can be evaluated using bc:

echo "s(1.2)" | bc -l # the sine of 1.2
-l loads the math library for bc

echo "e(1.2) + c(0)" | bc -l # exp(1.2)+cos(0)

assignment:
s=‘echo "s($r)" | bc -l‘

or using Perl:
s=‘perl -e "print sin($r)"‘

Basic Bash programming – p. 36/48

c© www.simula.no/˜hpl

Functions

compute x^5*exp(-x) if x>0, else 0 :

function calc() {
echo "
if ($1 >= 0.0) {

($1)^5*e(-($1))
} else {

0.0
} " | bc -l

}

function arguments: $1 $2 $3 and so on
return value: last statement

call:
r=4.2
s=‘calc $r‘

Basic Bash programming – p. 37/48

c© www.simula.no/˜hpl

Another function example

#!/bin/bash

function statistics {
avg=0; n=0
for i in $@; do
avg=‘echo $avg + $i | bc -l‘
n=‘echo $n + 1 | bc -l‘

done
avg=‘echo $avg/$n | bc -l‘

max=$1; min=$1; shift;
for i in $@; do
if [‘echo "$i < $min" | bc -l‘ != 0]; then
min=$i; fi

if [‘echo "$i > $max" | bc -l‘ != 0]; then
max=$i; fi

done
printf "%.3f %g %g\n" $avg $min $max

}

Basic Bash programming – p. 38/48

c© www.simula.no/˜hpl

Calling the function

statistics 1.2 6 -998.1 1 0.1

statistics returns a list of numbers
res=‘statistics 1.2 6 -998.1 1 0.1‘

for r in $res; do echo "result=$r"; done

echo "average, min and max = $res"

Basic Bash programming – p. 39/48

c© www.simula.no/˜hpl

File globbing

List all .ps and .gif files using wildcard notation:

files=‘ls *.ps *.gif‘

or safer, if you have aliased ls:
files=‘/bin/ls *.ps *.gif‘

compress and move the files:
gzip $files
for file in $files; do
mv ${file}.gz $HOME/images

Basic Bash programming – p. 40/48

c© www.simula.no/˜hpl

Testing file types

if [-f $myfile]; then
echo "$myfile is a plain file"

fi

or equivalently:
if test -f $myfile; then

echo "$myfile is a plain file"
fi

if [! -d $myfile]; then
echo "$myfile is NOT a directory"

fi

if [-x $myfile]; then
echo "$myfile is executable"

fi

[-z $myfile] && echo "empty file $myfile"

Basic Bash programming – p. 41/48

c© www.simula.no/˜hpl

Rename, copy and remove files

rename $myfile to tmp.1:
mv $myfile tmp.1

force renaming:
mv -f $myfile tmp.1

move a directory tree my tree to $root:
mv mytree $root

copy myfile to $tmpfile:
cp myfile $tmpfile

copy a directory tree mytree recursively to $root:
cp -r mytree $root

remove myfile and all files with suffix .ps:
rm myfile *.ps

remove a non-empty directory tmp/mydir:
rm -r tmp/mydir

Basic Bash programming – p. 42/48

c© www.simula.no/˜hpl

Directory management

make directory:
$dir = "mynewdir";
mkdir $mynewdir
mkdir -m 0755 $dir # readable for all
mkdir -m 0700 $dir # readable for owner only
mkdir -m 0777 $dir # all rights for all

move to $dir
cd $dir
move to $HOME
cd

create intermediate directories (the whole path):
mkdirhier $HOME/bash/prosjects/test1
or with GNU mkdir:
mkdir -p $HOME/bash/prosjects/test1

Basic Bash programming – p. 43/48

c© www.simula.no/˜hpl

The find command

Very useful command!

find visits all files in a directory tree and can execute one or more
commands for every file

Basic example: find the oscillator codes

find $scripting/src -name ’oscillator*’ -print

Or find all PostScript files

find $HOME \(-name ’*.ps’ -o -name ’*.eps’ \) -print

We can also run a command for each file:
find rootdir -name filenamespec -exec command {} \; -print
{} is the current filename

Basic Bash programming – p. 44/48

c© www.simula.no/˜hpl

Applications of find (1)

Find all files larger than 2000 blocks a 512 bytes (=1Mb):

find $HOME -name ’*’ -type f -size +2000 -exec ls -s {} \;

Remove all these files:
find $HOME -name ’*’ -type f -size +2000 \

-exec ls -s {} \; -exec rm -f {} \;

or ask the user for permission to remove:

find $HOME -name ’*’ -type f -size +2000 \
-exec ls -s {} \; -ok rm -f {} \;

Basic Bash programming – p. 45/48

c© www.simula.no/˜hpl

Applications of find (2)

Find all files not being accessed for the last 90 days:

find $HOME -name ’*’ -atime +90 -print

and move these to /tmp/trash:

find $HOME -name ’*’ -atime +90 -print \
-exec mv -f {} /tmp/trash \;

Note: this one does seemingly nothing...

find ~hpl/projects -name ’*.tex’

because it lacks the -print option for printing the name of all *.tex
files (common mistake)

Basic Bash programming – p. 46/48

c© www.simula.no/˜hpl

Tar and gzip

The tar command can pack single files or all files in a directory tree
into one file, which can be unpacked later

tar -cvf myfiles.tar mytree file1 file2

options:
c: pack, v: list name of files, f: pack into file

unpack the mytree tree and the files file1 and file2:
tar -xvf myfiles.tar

options:
x: extract (unpack)

The tarfile can be compressed:

gzip mytar.tar

result: mytar.tar.gz

Basic Bash programming – p. 47/48

c© www.simula.no/˜hpl

Two find/tar/gzip examples

Pack all PostScript figures:

tar -cvf ps.tar ‘find $HOME -name ’*.ps’ -print‘
gzip ps.tar

Pack a directory but remove CVS directories and redundant files

take a copy of the original directory:
cp -r myhacks /tmp/oblig1-hpl
remove CVS directories
find /tmp/oblig1-hpl -name CVS -print -exec rm -rf {} \;
remove redundant files:
find /tmp/oblig1-hpl \(-name ’*~’ -o -name ’*.bak’ \
-o -name ’*.log’ \) -print -exec rm -f {} \;
pack files:
tar -cf oblig1-hpl.tar /tmp/tar/oblig1-hpl.tar
gzip oblig1-hpl.tar
send oblig1-hpl.tar.gz as mail attachment

Basic Bash programming – p. 48/48

	Overview of Unix shells
	Why learn Bash?
	Why learn Bash? (2)
	More information
	Scientific Hello World script
	Purpose of this script
	Remark
	The code, in extended version
	Comments
	Bash and math
	The bc program
	Printing
	Convenient debugging tool: -x
	File reading and writing
	Simulation and visualization script
	Setting default parameters
	Parsing command-line options
	Alternative to case: if
	Creating a subdirectory
	Writing an input file
	Running the simulation
	Remark (1)
	Remark (2)
	Making plots
	Some common tasks in Bash
	File writing
	For-loops
	Counters
	C-style for-loops
	Example: bundle files
	The bundle output file
	Running an application
	Pipes
	Numerical expressions
	Functions
	Another function example
	Calling the function
	File globbing
	Testing file types
	Rename, copy and remove files
	Directory management
	The find command
	Applications of find (1)
	Applications of find (2)
	Tar and gzip
	Two find/tar/gzip examples

