
Slides from INF3331 lectures

Hans Petter Langtangen, Ola Skavhaug and Joakim Sundnes

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

August 2014

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

About this course

About this course – p.1/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Teachers (1)

Joakim Sundnes (sundnes@simula.no)

Jonathan Feinberg

Possible guest lecturers (TBD)

We use Python to create efficient working (or problem solving)
environments

We also use Python to develop large-scale simulation software

(which solves partial differential equations)

We believe high-level languages such as Python constitute a

promising way of making flexible and user-friendly software!

Some of our research migrates into this course

There are lots of opportunities for Master projects related to this
course

About this course – p.2/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Teachers (2)

Most examples are from our own research; involves some science
and/or mathematics!

Very little mathematics knowledge is needed to complete the
course

Treating mathematical software as a “black box” without fully

understanding the contents is a useful exercise

Translating simple mathematical expressions to computer code is

highly relevant for many applications

About this course – p.3/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Contents

Scripting in general

Basic Bash programming

Quick Python introduction for beginners (two weeks)

Regular expressions

Python problem solving

Efficient Python with vectorization and NumPy arrays

Combining Python with C, C++ and Fortran

Useful tools; distributing Python modules, documenting code,

version control, testing and verification of software

Creating web interfaces to Python scripts

About this course – p.4/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

What you will learn

Scripting in general, but with most examples taken from scientific
computing

Jump into useful scripts and dissect the code

Learning by doing

Find examples, look up man pages, Web docs and textbooks on
demand

Get the overview

Customize existing code

Have fun and work with useful things

About this course – p.5/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Background 1; INF3331 vs INF1100

In 2011, about 50% of INF3331 students had INF1100, about
33% in 2012 and 2013

Wide range of backgrounds with respect to Python and general
programming experience

Since INF3331 does not build on INF1100, some overlap is
inevitable

Two weeks of basic Python intro not useful for those with INF1100
background

INF3331 has more focus on scripting and practical problem
solving

We welcome any feedback on how we can make INF3331
interesting and challenging for students with different backgrounds

About this course – p.6/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Background 2; mathematics

Very little mathematics is needed to complete the course.

Basic knowledge will make life easier;

General functions, such as f(x) = ax+ b, and how they are

turned into computer code

Standard mathematical functions such as sin(x), cos(x) and

exponential functions

Simple matrix-vector operations

A learn-on-demand strategy should work fine, as long as you

don’t panic at the sight of a mathematical expression.

Matlab is commonly cited as code examples, since this is a de
facto standard for scientific computing.

About this course – p.7/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Teaching material (1)

Slides from lectures (by Sundnes, Skavhaug, Langtangen et al).

A preliminary version is found here
http://www.uio.no/studier/emner/matnat/ifi/INF3331/h14/inf3331_h14.pdf

Do not print these slides now! Will be substantially updated
through the fall.

H.P. Langtangen and G. K. Sandve: Illustrating Python via

Bioinformatics Examples, download from

http://hplgit.github.io/bioinf-py/doc/tutorial/bioinf-py.pdf

Associated book (optional):
H. P. Langtangen: Python Scripting for Computational Science,

3rd edition, Springer 2008

You must find the rest: manuals, textbooks, google

About this course – p.8/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Teaching material (2)

Good Python litterature:
Harms and McDonald: The Quick Python Book
(tutorial+advanced)
Beazley: Python Essential Reference
Grayson: Python and Tkinter Programming

About this course – p.9/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Lectures and groups (1)

Lectures Tuesdays 12.15-14.00

Groups Thursday 12.15-14, Thursday 14.15-16, Friday 10.15-12

A tentative lecture plan will be online shortly

Slides will be updated as we go. Printing the entire pdf file in
August is not recommended.

Updated slides will be available before each lecture

Source code will normally be available after the lecture

Groups and exercises are the core of the course; problem solving

is in focus.

About this course – p.10/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Lectures and groups (2)

August 19th:

Intro/motivation; scripting vs regular programming

“User survey”

August 26th:

Basic shell scripting

September 2nd & 9th:

Python introduction (not needed if you have INF1100)

September 16th:

Regular expressions

About this course – p.11/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Group classes anno 2013 (1)

There used to be no regular “group classes” in INF3331

Groups were for correcting and marking weekly assignments.

To get a weekly assignment approved;

Show up at the group with a print of the script(s)

Have the assignment approved by another student

Hand in the assignment electronically (in Devilry) by Friday

About this course – p.12/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Group classes anno 2013 (2)

Three alternative course paths:

1. 75% of weekly assignments approved (60 points out of 80)

2. 37.5% of weekly assignments (30 points) + small project

(approximately 32 hrs)

3. No weekly assignments, large project (64 hrs)

+ written exam for everyone.

About this course – p.13/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Why has the course been organized like this?

“Problem solving” is best learnt by solving a large number of
problems

With limited resources, this is the only way we can maintain the
large number of mandatory assignments

You learn from reading and inspecting eachother’s code

About this course – p.14/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Group classes anno 2014

Final details TBD, but here’s a rough plan:

No strict requirement to show up in group classes to get an
assignment approved.

Most likely a reward system, where showing up and correcting
assignments gives you extra points.

Goal; more flexible implementation, but which still allows a high volume

of programming exercises. Any feedback or suggestions;

sundnes@simula.no

About this course – p.15/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Software for this course

Python runs on Windows, Mac, Linux.

I have no experience with Windows and very limited experience
with Python on Mac

I recommend Ubuntu Linux, either running natively or in a virtual
machine.

Follow the instructions for INF1100:
http://heim.ifi.uio.no/ inf1100/installering.html

About this course – p.16/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Python 2 vs Python 3

Python 3.3 is the newest stable version

Python 2.7 is still widely used

Default on Mac OS X

Many libraries are still based on Python 2.7

This course:

2012 - Python 2.7

2013 - Mix of Python 2.7 and 3.3

2014 - Python 3.3 (but look out for bugs in slides!)

Small difference for the scope of this course, but watch out for
widely used functions such as print, open, input, range,
and integer division.

About this course – p.17/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Scripting vs regular programming

Scripting vs regular programming – p.18/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

What is a script?

Very high-level, often short, program
written in a high-level scripting language

Scripting languages: Unix shells, Tcl, Perl, Python, Ruby,

Scheme, Rexx, JavaScript, VisualBasic, ...

This course: Python
+ a taste of Bash (Unix shell)

Scripting vs regular programming – p.19/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Characteristics of a script

Glue other programs together

Extensive text processing

File and directory manipulation

Often special-purpose code

Many small interacting scripts may yield a big system

Perhaps a special-purpose GUI on top

(Sometimes) portable across Unix, Windows, Mac

Interpreted program (no compilation+linking)

Scripting vs regular programming – p.20/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Why not stick to Java or C/C++?

Features of scripting languages compared with Java, C/C++ and
Fortran:

shorter, more high-level programs

much faster software development

more convenient programming

you feel more productive

Three main reasons:

no variable declarations,
but lots of consistency checks at run time

easy to combine software components and interact with the OS

lots of standardized libraries and tools

Scripting vs regular programming – p.21/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Scripts yield short code

Consider reading real numbers from a file, where each line can

contain an arbitrary number of real numbers:

1.1 9 5.2
1.762543E-02
0 0.01 0.001

9 3 7

Python solution:

F = open(filename, ’r’)
n = F.read().split()

Scripting vs regular programming – p.22/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Using regular expressions (1)

Suppose we want to read complex numbers written as text

(-3, 1.4) or (-1.437625E-9, 7.11) or (4, 2)

Python solution:

import re

m = re.search(r’\(\s*([^,]+)\s*,\s*([^,]+)\s*\)’,
’(-3,1.4)’)

re, im = [float(x) for x in m.groups()]

(This will only find the first match of the regular expression, use

re.findall to return a list of all matches.)

Scripting vs regular programming – p.23/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Using regular expressions (2)

Regular expressions like

\(\s*([^,]+)\s*,\s*([^,]+)\s*\)

constitute a powerful language for specifying text patterns

Doing the same thing, without regular expressions, in Fortran and

C requires quite some low-level code at the character array level

Remark: we could read pairs (-3, 1.4) without using regular
expressions,

s = ’(-3, 1.4)’
re, im = s[1:-1].split(’,’)

Scripting vs regular programming – p.24/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Script variables are not declared

Example of a Python function:

def debug(leading_text, variable):

if os.environ.get(’MYDEBUG’, ’0’) == ’1’:

print leading_text, variable

Dumps any printable variable
(number, list, hash, heterogeneous structure)

Printing can be turned on/off by setting the environment variable
MYDEBUG

Scripting vs regular programming – p.25/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The same function in C++

Templates can be used to mimic dynamically typed languages

Not as quick and convenient programming:

template <class T>
void debug(std::ostream& o,

const std::string& leading_text,

const T& variable)
{
char* c = getenv("MYDEBUG");
bool defined = false;
if (c != NULL) { // if MYDEBUG is defined ...

if (std::string(c) == "1") { // if MYDEBUG is true ...

defined = true;
}

}
if (defined) {

o << leading_text << " " << variable << std::endl;

}
}

Scripting vs regular programming – p.26/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The relation to OOP

Object-oriented programming can also be used to parameterize
types

Introduce base class A and a range of subclasses, all with a

(virtual) print function

Let debug work with var as an A reference

Now debug works for all subclasses of A

Advantage: complete control of the legal variable types that

debug are allowed to print (may be important in big systems to

ensure that a function can only make transactions with certain
objects)

Disadvantage: much more work, much more code, less reuse of
debug in new occasions

Scripting vs regular programming – p.27/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Flexible function interfaces (1)

User-friendly environments (Matlab, Maple, Mathematica, S-Plus,
...) allow flexible function interfaces

Novice user:

f is some data
plot(f)

More control of the plot:

plot(f, label=’f’, xrange=[0,10])

More fine-tuning:

plot(f, label=’f’, xrange=[0,10], title=’f demo’,

linetype=’dashed’, linecolor=’red’)

Scripting vs regular programming – p.28/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Flexible function interfaces (2)

In C++, some flexibility is obtained using default argument values,
e.g.,

void plot(const double[]& data, const char[] label=’’,

const char[] title = ’’, const char[] linecolor=’black’)

Limited flexibility, since the order of arguments is significant.

Python uses keyword arguments = function arguments with

keywords and default values, e.g.,

def plot(data, label=’’, xrange=None, title=’’,
linetype=’solid’, linecolor=’black’, ...)

The sequence and number of arguments in the call can be
chosen by the user

Scripting vs regular programming – p.29/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Classification of languages (1)

Many criteria can be used to classify computer languages

Dynamically vs statically typed languages

Python (dynamic):

c = 1 # c is an integer

c = [1,2,3] # c is a list

C (static):

double c; c = 5.2; # c can only hold doubles

c = "a string..." # compiler error

Scripting vs regular programming – p.30/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Classification of languages (2)

Weakly vs strongly typed languages

Perl (weak):

$b = ’1.2’

$c = 5*$b; # implicit type conversion: ’1.2’ -> 1.2

Python (strong):

import math

b = ’1.2’
c = 5*b #legal, but probably not the result you want
c = math.exp(b) #illegal, no implicit type conversion

c = math.exp(float(b)) #legal

Scripting vs regular programming – p.31/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Classification of languages (3)

Interpreted vs compiled languages

Dynamically vs statically typed (or type-safe) languages

High-level vs low-level languages (Python-C)

Very high-level vs high-level languages (Python-C)

Scripting vs system languages

Scripting vs regular programming – p.32/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Turning files into code (1)

Code can be constructed and executed at run-time

Consider an input file with the syntax

a = 1.2
no of iterations = 100
solution strategy = ’implicit’

c1 = 0
c2 = 0.1
A = 4

How can we read this file and define variables a,
no_of_iterations, solution_strategi, c1, c2, A with
the specified values?

Scripting vs regular programming – p.33/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Turning files into code (2)

The answer lies in this short and generic code:

file = open(’inputfile.dat’, ’r’)

for line in file:
first replace blanks on the left-hand side of = by _

variable, value = line.split(’=’).strip()
variable = re.sub(’ ’, ’_’, variable)
exec(variable + ’=’ + value) # magic...

This cannot be done in Fortran, C, C++ or Java!

Scripting vs regular programming – p.34/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Scripts can be slow

Perl and Python scripts are first compiled to byte-code

The byte-code is then interpreted

Text processing is usually as fast as in C

Loops over large data structures might be very slow

for i in range(len(A)):

A[i] = ...

Fortran, C and C++ compilers are good at optimizing such loops

at compile time and produce very efficient assembly code (e.g.

100 times faster)

Fortunately, long loops in scripts can easily be migrated to Fortran

or C

Scripting vs regular programming – p.35/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Scripts may be fast enough

Read 100 000 (x,y) data from file and
write (x,f(y)) out again

Pure Python: 4s

Pure Perl: 3s

Pure Tcl: 11s

Pure C (fscanf/fprintf): 1s

Pure C++ (iostream): 3.6s

Pure C++ (buffered streams): 2.5s

Numerical Python modules: 2.2s (!)

Remark: in practice, 100 000 data points are written and read in
binary format, resulting in much smaller differences

Scripting vs regular programming – p.36/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

When scripting is convenient (1)

The application’s main task is to connect together existing
components

The application includes a graphical user interface

The application performs extensive string/text manipulation

The design of the application code is expected to change

significantly

CPU-time intensive parts can be migrated to C/C++ or Fortran

Scripting vs regular programming – p.37/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

When scripting is convenient (2)

The application can be made short if it operates heavily on list or
hash structures

The application is supposed to communicate with Web servers

The application should run without modifications on Unix,
Windows, and Macintosh computers, also when a GUI is included

Scripting vs regular programming – p.38/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

When to use C, C++, Java, Fortran

Does the application implement complicated algorithms and data

structures?

Does the application manipulate large datasets so that execution

speed is critical?

Are the application’s functions well-defined and changing slowly?

Will type-safe languages be an advantage, e.g., in large

development teams?

Scripting vs regular programming – p.39/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Some personal applications of scripting

Get the power of Unix also in non-Unix environments

Automate manual interaction with the computer

Customize your own working environment and become more

efficient

Increase the reliability of your work
(what you did is documented in the script)

Have more fun!

Scripting vs regular programming – p.40/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Some business applications of scripting

Python and Perl are very popular in the open source movement
and Linux environments

Python, Perl and PHP are widely used for creating Web services

(Django, SOAP, Plone)

Python and Perl (and Tcl) replace ’home-made’
(application-specific) scripting interfaces

Many companies want candidates with Python experience

Scripting vs regular programming – p.41/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

What about mission-critical operations?

Scripting languages are free

What about companies that do mission-critical operations?

Can we use Python when sending a man to Mars?

Who is responsible for the quality of products?

Scripting vs regular programming – p.42/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The reliability of scripting tools

Scripting languages are developed as a world-wide collaboration

of volunteers (open source model)

The open source community as a whole is responsible for the
quality

There is a single repository for the source codes (plus mirror sites)

This source is read, tested and controlled by a very large number

of people (and experts)

The reliability of large open source projects like Linux, Python,
and Perl appears to be very good - at least as good as

commercial software

Scripting vs regular programming – p.43/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Practical problem solving

Problem: you are not an expert (yet)

Where to find detailed info, and how to understand it?

The efficient programmer navigates quickly in the jungle of

textbooks, man pages, README files, source code examples,

Web sites, news groups, ... and has a gut feeling for what to look

for

The aim of the course is to improve your practical problem-solving
abilities

You think you know when you learn, are more sure when you can
write, even more when you can teach, but certain when you can
program (Alan Perlis)

Scripting vs regular programming – p.44/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Basic Bash programming

Basic Bash programming – p.45/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Overview of Unix shells

The original scripting languages were (extensions of) command
interpreters in operating systems

Primary example: Unix shells

Bourne shell (sh) was the first major shell

C and TC shell (csh and tcsh) had improved command
interpreters, but were less popular than Bourne shell for
programming

Bourne Again shell (Bash/bash): GNU/FSF improvement of
Bourne shell

Other Bash-like shells: Korn shell (ksh), Z shell (zsh)

Bash is the dominating Unix shell today

Basic Bash programming – p.46/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Why learn Bash?

Learning Bash means learning Unix

Learning Bash means learning the roots of scripting

(Bourne shell is a subset of Bash)

Shell scripts, especially in Bourne shell and Bash, are frequently
encountered on Unix systems

Bash is widely available (open source) and the dominating
command interpreter and scripting language on today’s Unix
systems

Basic Bash programming – p.47/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Why learn Bash? (2)

Shell scripts evolve naturally from a workflow:

1. A sequence of commands you use often are placed in a file

2. Command-line options are introduced to enable different
options to be passed to the commands

3. Introducing variables, if tests, loops enables more complex

program flow

4. At some point pre- and postprocessing becomes too

advanced for bash, at which point (parts of) the script should
be ported to Python or other tools

Shell scripts are often used to glue more advanced scripts in Perl
and Python

Basic Bash programming – p.48/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Remark

We use plain Bourne shell (/bin/sh) when special features of
Bash (/bin/bash) are not needed

Most of our examples can in fact be run under Bourne shell (and
of course also Bash)

Note that Bourne shell (/bin/sh) is usually just a link to Bash
(/bin/bash) on Linux systems
(Bourne shell is proprietary code, whereas Bash is open source)

Basic Bash programming – p.49/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

More information

man bash

“Introduction to and overview of Unix” link in doc.html (part of
the source code for Python Scripting for Computational Science,

by H.P. Langtangen)

Bash reference manual:
www.gnu.org/software/bash/manual/bashref.html

“Advanced Bash-Scripting Guide”:
http://www.tldp.org/LDP/abs/html/

Basic Bash programming – p.50/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

What Bash is good for

File and directory management

Systems management (build scripts)

Combining other scripts and commands

Rapid prototyping of more advanced scripts

Simple output processing, plotting etc.

Basic Bash programming – p.51/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

What Bash is not good for

Cross-platform portability

Graphics, GUIs

Interface with libraries or legacy code

More advanced post processing and plotting

Basic Bash programming – p.52/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Some common tasks in Bash

file writing

for-loops

running an application

pipes

writing functions

file globbing, testing file types

copying and renaming files, creating and moving to directories,

creating directory paths, removing files and directories

directory tree traversal

packing directory trees

Basic Bash programming – p.53/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Bash variables and commands

Assign a variable by x=3.4, retrieve the value of the variable by

$x (also called variable substitution).

Variables passed as command line arguments when running a
script are called positional parameters.

Bash has a number of built in commands, type help

or help | less to see all.

The real power comes from all the available Unix commands, in
addition to your own applications and scripts.

Basic Bash programming – p.54/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Bash variables (1)

Variables in Bash are untyped!

Generally treated as character arrays, but permit simple arithmetic
and other operations

Variables can be explicitly declared to integer or array;

declare -i i # i is an integer
declare -a A # A is an array

Basic Bash programming – p.55/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Bash variables (2)

x=3
y=2

z=$x+$y

echo $z #output; 3+2

z=$((x+y))

((v=x+y))

let w=x+y

echo $z $v $w #output; 5 5 5

declare -i x=3
declare -i y=4

z=$x+$y

echo $z #output; 3+2

y=a

echo $y #output; 0

Basic Bash programming – p.56/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Bash variables (3)

Comparison of two integers use a syntax different comparison of
two strings:

if [$i -eq 10]; then # integer comparison

if ["$name" == "10"]; then # string comparison

Unless you have declared a variable to be an integer, assume that

all variables are strings and use double quotes (strings) when

comparing variables in an if test

if ["$?" != "0"]; then # this is safe

if [$? != 0]; then # might be unsafe

Basic Bash programming – p.57/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Example: the very basics

Let’s start with a script writing "Hello, World!"

Scientific computing extension: compute the sine of a number as
well

The script (hw.sh) should be run like this:

./hw.sh 3.4

or (less common):

bash hw.sh 3.4

Output:

Hello, World! sin(3.4)=-0.255541102027

Can be done with a single line of code:

echo "Hello, World! sin($1)=$(echo "s($1)" | bc -l)"

Basic Bash programming – p.58/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Purpose of this script

Demonstrate

how to read a command-line argument

how to call a math (sine) function

How to combine different commands (piping)

how to work with variables

how to print text and numbers

Basic Bash programming – p.59/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The code, in expanded version

File hw.sh:

#!/bin/sh
r=$1 # store first command-line argument in r

s=‘echo "s($r)" | bc -l‘

print to the screen:

echo "Hello, World! sin($r)=$s"

Basic Bash programming – p.60/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Comments

The first line specifies the interpreter of the script (here
/bin/sh, could also have used /bin/bash, or skipped this
line altogether...)

The command-line variables are available as the script variables

$1 $2 $3 $4 and so on

Variables are initialized as

r=$1

while the value of r requires a dollar prefix:

my_new_variable=$r # copy r to my_new_variable

Basic Bash programming – p.61/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Bash and math

Bourne shell and Bash have very little built-in math, we therefore
need to use bc, Perl (or some other tool) to do the math:

s=‘echo "s($r)" | bc -l‘

s = $(echo ’s($r)’ | bc -l’)

s=‘perl -e ’$s=sin($ARGV[0]); print $s;’ $r‘

Back quotes means executing the command inside the quotes

and assigning the output to the variable on the left-hand-side

some_variable=‘some Unix command‘

alternative notation:
some_variable=$(some Unix command)

Basic Bash programming – p.62/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The bc program

bc = interactive calculator

Documentation: man bc

bc -l means bc with math library

Note: sin is s, cos is c, exp is e

echo sends a text to be interpreted by bc and bc responds with
output (which we assign to s)

variable=‘echo "math expression" | bc -l‘

The Bash construct (()) or builtin command let
expression does somthing similar, but only for very simple
math expressions

Basic Bash programming – p.63/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Printing

The echo command is used for writing:

echo "Hello, World! sin($r)=$s"

and variables can be inserted in the text string

(variable interpolation)

Bash also has a printf function for format control:

printf "Hello, World! sin(%g)=%12.5e\n" $r $s

cat is usually used for printing multi-line text

(see next slide)

Basic Bash programming – p.64/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Convenient debugging tool: -x

Each source code line is printed prior to its execution if you add -x
as option to /bin/sh or /bin/bash

Either in the header

#!/bin/sh -x

or on the command line:

unix> /bin/sh -x hw.sh
unix> sh -x hw.sh
unix> bash -x hw.sh

Very convenient during debugging

Basic Bash programming – p.65/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Example: the classical Unix script

A combination of commands, or a single long command, that you use

often;

../build/app/pulse_app --cmt WinslowRice --casename ellipsoid

< ellipsoid.i | tee main_output

(should be a single line)

In this case, flexibility is often not a high priority. However, there is

room for improvement;

Not possible to change command line options, input and output

files

Output file main_output is overwritten for each run

Can we edit the input file for each run?

Basic Bash programming – p.66/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Problem 1; changing application input

In many cases only one parameter is changed frequently;

CASE=’testbox’
CMT=’WinslowRice’
if [$# -gt 0]; then

CMT=$1
fi
INFILE=’ellipsoid_test.i’

OUTFILE=’main_output’

../build/app/pulse_app --cmt $CMT --casename $CASE

< $INFILE | tee $OUTFILE

Still not very flexible, but in many cases sufficient. More flexibility
requires more advanced parsing of command line options, which will
be introduced later.

Basic Bash programming – p.67/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Problem 2; overwriting output file

A simple solution is to add the output file as a command line
option, but what if we forget to change this from one run to the

next?

Simple solution to ensure data is never over-written:

jobdir=$PWD/‘date +%s‘

mkdir $jobdir

cd $jobdir

../../build/app/pulse_app --cmt $CMT --casename $CASE < $INFILE

cd ..
if [-L ’latest’]; then
rm latest
fi
ln -s $jobdir latest

Basic Bash programming – p.68/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Problem 2; overwriting output file (2)

Alternative solutions;

Use process ID of the script ($$, not really unique)

mktemp can create a temporary file with a unique name, for use
by the script

Check if subdirectory exists, exit script if it does

dir=$case

check if $dir is a directory:

if [-d $dir]
#exit script to avoid overwriting data

then
echo "Output directory exists, provide a different name"

exit
fi
mkdir $dir # create new directory $dir

cd $dir # move to $dir

Basic Bash programming – p.69/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Alternative if-tests

As with everything else in Bash, there are multiple ways to do if-tests:

the ’then’ statement can also appear on the 1st line:

if [-d $dir]; then
exit

fi

another form of if-tests:
if test -d $dir; then
exit

fi

and a shortcut:
[-d $dir] && exit

test -d $dir && exit

Basic Bash programming – p.70/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Problem 3; can we edit the input file at run time?

Some applications do not take command line options, all input
must read from standard input or an input file

A Bash script can be used to equip such programs with basic

handling of command line options

We want to grab input from the command line, create the correct

input file, and run the application

Basic Bash programming – p.71/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

File reading and writing

File writing is efficiently done by ’here documents’:

cat > myfile <<EOF

multi-line text
can now be inserted here,
and variable substition such as
$myvariable is

supported. The final EOF must

start in column 1 of the
script file.
EOF

Basic Bash programming – p.72/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Setting default parameters

#!/bin/sh

pi=3.14159
m=1.0; b=0.7; c=5.0; func="y"; A=5.0;

w=‘echo 2*$pi | bc‘

y0=0.2; tstop=30.0; dt=0.05; case="tmp1"

screenplot=1

Basic Bash programming – p.73/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Parsing command-line options

read variables from the command line, one by one:

while [$# -gt 0] # $# = no of command-line args.

do
option = $1; # load command-line arg into option

shift; # eat currently first command-line arg

case "$option" in

-m)
m=$1; shift; ;; # load next command-line arg

-b)
b=$1; shift; ;;

...

*)
echo "$0: invalid option \"$option\""; exit ;;

esac
done

Basic Bash programming – p.74/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Alternative to case: if

case is standard when parsing command-line arguments in Bash, but

if-tests can also be used. Consider

case "$option" in

-m)
m=$1; shift; ;; # load next command-line arg

-b)
b=$1; shift; ;;

*)
echo "$0: invalid option \"$option\""; exit ;;

esac

versus

if ["$option" == "-m"]; then

m=$1; shift; # load next command-line arg

elif ["$option" == "-b"]; then

b=$1; shift;
else

echo "$0: invalid option \"$option\""; exit

fi

Basic Bash programming – p.75/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

After assigning variables, we can write the input file

write to $infile the lines that appear between

the EOF symbols:

cat > $infile <<EOF

m=$m

b=$b

c=$c

A=$A

w=$w

y0=$y0

tstop=$tstop

dt=$dt
EOF

Basic Bash programming – p.76/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Then execute the program as usual

Redirecting input to read from the new input file

../../build/pulse_app < $infile

Can add a check for successful execution:

the shell variable $? is 0 if last command

was successful, otherwise $? != 0

if ["$?" != "0"]; then
echo "running pulse_app failed"; exit 1

fi

exit n sets $? to n

Basic Bash programming – p.77/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Making plots with Gnuplot (old-style)

Make Gnuplot script:

echo "set title ’$case: m=$m ...’" > $case.gnuplot
...
continue writing with a here document:

cat >> $case.gnuplot <<EOF

set size ratio 0.3 1.5, 1.0;
...
plot ’sim.dat’ title ’y(t)’ with lines;
...
EOF

Run Gnuplot:

gnuplot -geometry 800x200 -persist $case.gnuplot

if ["$?" != "0"]; then
echo "running gnuplot failed"; exit 1

fi

Python is preferred over Bash for most kinds of plotting

Basic Bash programming – p.78/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Other uses of cat

cat myfile # write myfile to the screen

cat myfile > yourfile # write myfile to yourfile

cat myfile >> yourfile # append myfile to yourfile

cat myfile | wc # send myfile as input to wc

Basic Bash programming – p.79/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

For-loops

What if we want to run the application for multiple input files?

./run.sh test1.i test2.i test3.i test4.i

or
./run.sh *.i

A for-loop over command line arguments

for arg in $@; do

../../build/app/pulse_app < $arg

done

Can be combined with more advanced command line options,
output directories, etc...

Basic Bash programming – p.80/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

For-loops (2)

For loops for file management:

files=‘/bin/ls *.tmp‘

we use /bin/ls in case ls is aliased

for file in $files
do
echo removing $file

rm -f $file
done

Basic Bash programming – p.81/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Counters

Declare an integer counter:

declare -i counter
counter=0
arithmetic expressions must appear inside (())

((counter++))
echo $counter # yields 1

For-loop with counter:

declare -i n; n=1
for arg in $@; do

echo "command-line argument no. $n is <$arg>"

((n++))
done

Basic Bash programming – p.82/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

C-style for-loops

declare -i i
for ((i=0; i<$n; i++)); do

echo $c
done

Basic Bash programming – p.83/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Example: bundle files

Pack a series of files into one file

Executing this single file as a Bash script packs out all the

individual files again

Usage:

bundle file1 file2 file3 > onefile # pack

bash onefile # unpack

Writing bundle is easy:

#/bin/sh
for i in $@; do

echo "echo unpacking file $i"

echo "cat > $i <<EOF"

cat $i
echo "EOF"

done

Basic Bash programming – p.84/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The bundle output file

Consider 2 fake files; file1

Hello, World!
No sine computations today

and file2

1.0 2.0 4.0
0.1 0.2 0.4

Running bundle file1 file2 yields the output

echo unpacking file file1

cat > file1 <<EOF
Hello, World!
No sine computations today
EOF
echo unpacking file file2

cat > file2 <<EOF
1.0 2.0 4.0
0.1 0.2 0.4
EOF

Basic Bash programming – p.85/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Running an application

Running in the foreground:

cmd="myprog -c file.1 -p -f -q";

$cmd < my_input_file

output is directed to the file res

$cmd < my_input_file > res

process res file by Sed, Awk, Perl or Python

Running in the background:

myprog -c file.1 -p -f -q < my_input_file &

or stop a foreground job with Ctrl-Z and then type bg

Basic Bash programming – p.86/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Pipes

Output from one command can be sent as input to another
command via a pipe

send files with size to sort -rn
(reverse numerical sort) to get a list

of files sorted after their sizes:

/bin/ls -s | sort -r

cat $case.i | oscillator

is the same as
oscillator < $case.i

Make a new application: sort all files in a directory tree root,
with the largest files appearing first, and equip the output with

paging functionality:

du -a root | sort -rn | less

Basic Bash programming – p.87/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Functions

compute x^5*exp(-x) if x>0, else 0 :

function calc() {
echo "
if ($1 >= 0.0) {

($1)^5*e(-($1))
} else {

0.0
} " | bc -l

}

function arguments: $1 $2 $3 and so on

return value: last statement

call:
r=4.2
s=‘calc $r‘

Basic Bash programming – p.88/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Another function example

#!/bin/bash

function statistics {
avg=0; n=0

for i in $@; do

avg=‘echo $avg + $i | bc -l‘

n=‘echo $n + 1 | bc -l‘

done
avg=‘echo $avg/$n | bc -l‘

max=$1; min=$1; shift;

for i in $@; do

if [‘echo "$i < $min" | bc -l‘ != 0]; then

min=$i; fi

if [‘echo "$i > $max" | bc -l‘ != 0]; then

max=$i; fi
done
printf "%.3f %g %g\n" $avg $min $max

}

Basic Bash programming – p.89/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Calling the function

statistics 1.2 6 -998.1 1 0.1

statistics returns a list of numbers
res=‘statistics 1.2 6 -998.1 1 0.1‘

for r in $res; do echo "result=$r"; done

echo "average, min and max = $res"

Basic Bash programming – p.90/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

File globbing, for loop on the command line

List all .ps and .gif files using wildcard notation:

files=‘ls *.ps *.gif‘

or safer, if you have aliased ls:
files=‘/bin/ls *.ps *.gif‘

compress and move the files:

gzip $files

for file in $files; do

mv ${file}.gz $HOME/images

Basic Bash programming – p.91/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Testing file types

if [-f $myfile]; then

echo "$myfile is a plain file"

fi

or equivalently:

if test -f $myfile; then

echo "$myfile is a plain file"

fi

if [! -d $myfile]; then

echo "$myfile is NOT a directory"

fi

if [-x $myfile]; then

echo "$myfile is executable"
fi

[-z $myfile] && echo "empty file $myfile"

Basic Bash programming – p.92/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Rename, copy and remove files

rename $myfile to tmp.1:

mv $myfile tmp.1

force renaming:

mv -f $myfile tmp.1

move a directory tree my tree to $root:

mv mytree $root

copy myfile to $tmpfile:

cp myfile $tmpfile

copy a directory tree mytree recursively to $root:

cp -r mytree $root

remove myfile and all files with suffix .ps:

rm myfile *.ps

remove a non-empty directory tmp/mydir:

rm -r tmp/mydir

Basic Bash programming – p.93/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Directory management

make directory:

$dir = "mynewdir";

mkdir $mynewdir

mkdir -m 0755 $dir # readable for all

mkdir -m 0700 $dir # readable for owner only

mkdir -m 0777 $dir # all rights for all

move to $dir

cd $dir

move to $HOME
cd

create intermediate directories (the whole path):

mkdirhier $HOME/bash/prosjects/test1

or with GNU mkdir:
mkdir -p $HOME/bash/prosjects/test1

Basic Bash programming – p.94/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

The find command

Very useful command!

find visits all files in a directory tree and can execute one or
more commands for every file

Basic example: find the oscillator codes

find $scripting/src -name ’oscillator*’ -print

Or find all PostScript files

find $HOME \(-name ’*.ps’ -o -name ’*.eps’ \) -print

We can also run a command for each file:

find rootdir -name filenamespec -exec command {} \; -print

{} is the current filename

Basic Bash programming – p.95/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Applications of find (1)

Find all files larger than 2000 blocks a 512 bytes (=1Mb):

find $HOME -name ’*’ -type f -size +2000 -exec ls -s {} \;

Remove all these files:

find $HOME -name ’*’ -type f -size +2000 \

-exec ls -s {} \; -exec rm -f {} \;

or ask the user for permission to remove:

find $HOME -name ’*’ -type f -size +2000 \

-exec ls -s {} \; -ok rm -f {} \;

Basic Bash programming – p.96/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Applications of find (2)

Find all files not being accessed for the last 90 days:

find $HOME -name ’*’ -atime +90 -print

and move these to /tmp/trash:

find $HOME -name ’*’ -atime +90 -print \

-exec mv -f {} /tmp/trash \;

Basic Bash programming – p.97/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Tar and gzip

The tar command can pack single files or all files in a directory

tree into one file, which can be unpacked later

tar -cvf myfiles.tar mytree file1 file2

options:

c: pack, v: list name of files, f: pack into file

unpack the mytree tree and the files file1 and file2:

tar -xvf myfiles.tar

options:

x: extract (unpack)

The tarfile can be compressed:

gzip mytar.tar

result: mytar.tar.gz

Basic Bash programming – p.98/99

c© www.simula.no/˜hpl,www.simula.no/˜sundnes

Two find/tar/gzip examples

Pack all PostScript figures:

tar -cvf ps.tar ‘find $HOME -name ’*.ps’ -print‘

gzip ps.tar

Pack a directory but remove CVS directories and redundant files

take a copy of the original directory:

cp -r myhacks /tmp/oblig1-hpl

remove CVS directories
find /tmp/oblig1-hpl -name CVS -print -exec rm -rf {} \;
remove redundant files:
find /tmp/oblig1-hpl \(-name ’*~’ -o -name ’*.bak’ \

-o -name ’*.log’ \) -print -exec rm -f {} \;

pack files:
tar -cf oblig1-hpl.tar /tmp/tar/oblig1-hpl.tar

gzip oblig1-hpl.tar

send oblig1-hpl.tar.gz as mail attachment

Basic Bash programming – p.99/99

	Teachers (1)
	Teachers (2)
	Contents
	What you will learn
	Background 1; INF3331 vs INF1100
	Background 2; mathematics
	Teaching material (1)
	Teaching material (2)
	Lectures and groups (1)
	Lectures and groups (2)
	Group classes anno 2013 (1)
	Group classes anno 2013 (2)
	Why has the course been organized like this?
	Group classes anno 2014
	Software for this course
	Python 2 vs Python 3
	What is a script?
	Characteristics of a script
	Why not stick to Java or C/C++?
	Scripts yield short code
	Using regular expressions (1)
	Using regular expressions (2)
	Script variables are not declared
	The same function in C++
	The relation to OOP
	Flexible function interfaces (1)
	Flexible function interfaces (2)
	Classification of languages (1)
	Classification of languages (2)
	Classification of languages (3)
	Turning files into code (1)
	Turning files into code (2)
	Scripts can be slow
	Scripts may be fast enough
	When scripting is convenient (1)
	When scripting is convenient (2)
	When to use C, C++, Java, Fortran
	Some personal applications of scripting
	Some business applications of scripting
	What about mission-critical operations?
	The reliability of scripting tools
	Practical problem solving
	Overview of Unix shells
	Why learn Bash?
	Why learn Bash? (2)
	Remark
	More information
	What Bash is good for
	What Bash is not good for
	Some common tasks in Bash
	Bash variables and commands
	Bash variables (1)
	Bash variables (2)
	Bash variables (3)
	Example: the very basics
	Purpose of this script
	The code, in expanded version
	Comments
	Bash and math
	The bc program
	Printing
	Convenient debugging tool: -x
	Example: the classical Unix script
	Problem 1; changing application input
	Problem 2; overwriting output file
	Problem 2; overwriting output file (2)
	Alternative emp {if}-tests
	Problem 3; can we edit the input file at run time?
	File reading and writing
	Setting default parameters
	Parsing command-line options
	Alternative to case: if
	After assigning variables, we can write the input file
	Then execute the program as usual
	Making plots with Gnuplot (old-style)
	Other uses of emp {cat}
	For-loops
	For-loops (2)
	Counters
	C-style for-loops
	Example: bundle files
	The bundle output file
	Running an application
	Pipes
	Functions
	Another function example
	Calling the function
	File globbing, for loop on the command line
	Testing file types
	Rename, copy and remove files
	Directory management
	The find command
	Applications of find (1)
	Applications of find (2)
	Tar and gzip
	Two find/tar/gzip examples

