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Signal Sources

Two equivalent models of signal sources (e.g. a sensor or other
transducer): a) is called the The Thévenin form and b) the Norton
form. Note: Outputresistance RS is the same in both models while
vS(t) = iS(t)RS . (A more general model would consider an
outputimpedance (i.e. including output capacitance/inductance)
rather than just a resistance, but we’ll ignore that for now.)



Arbitrary Signals

Any arbitrary signal can be
expressed as an (infinite) sum or
(infinite) integral of sine wave
signals of different frequencies
and phases by means of the
inverse Fourier transform:

vS(t) =
1
2π

∫ ∞
−∞

v̂s(ω)e iωtdω

Where the Fourrier transform v̂s is a complex number describing
the frequency spectrum of the signal. Note that for a real signal
vs(t), v̂s(−ω) = −v̂s(ω), i.e. if you add them they will also be real.
You can conveniently plot v̂s in a Bode plot (more on that later)
consisting of a frequency dependent magnitude and phase plot.
A little matlab animation for illustration to show how this is a sum
of sine-waves shall be shown here.



Cyclic Signals

Cyclic signals can be expressed as
discreet sums of sine wave
signals, more precisely with
harmonics of the cycle frequency.



Example: Approximating Square Wave

Here is how a square wave can be
approximated with the sum of 3
sine waves.

v(t) =
4V
π

(
sinω0t +

1
3
sin 3ω0t +

1
5
sin 5ω0t + ...

)
(1.2)



Spectrum of Square Wave

Thus the spectrum of a square wave (or any cyclic signal) is
non-zero at the harmonics (multiples of the fundamental frequency)
only. It can thus be expressed as a sum.



Spectrum of Arbitrary Function

whereas the spectrum of a non-cyclic function can be non-zero for
any frequency, e.g. the function in figure 1.3.



Discrete Time/Sampled



Discrete Value/Digital

(for example binary)



ADC
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Amplifier Basic Concept



Example: Voltage Amplifier with Load Resistance



Gain in Decibels

Av =
vO

vI

Ap =
pO

pL
=

vO iO
vI iI

= AvAi

Ap,dB = 10 log10 Ap [dB]

Av ,dB = 20 log10 Av [dB]



Increasing Signal Power

(and thus in need of a power supply)

η =
PL

Pdc
× 100 (1.10)



Non-Ideal Behaviour (1/many)

Linear range:

L−
Av

≤ vI ≤
L+
Av

(near Fig. 1.14)



Symbol Convention

iC (t) = IC + ic(t) (1.11)



A First Voltage Amplifier Model

(slightly less ideal, i.e. adding input and output resistance)



Voltage Gain Dependence

Av ≡ vo

vi
= Avo

RL

RL + Ro
(1.13)

vo

vs
= Avo

Ri

Ri + RS

RL

RL + Ro
(below 1.13)



Example: Cascaded Amplifiers

vo

vs
=

Ri1

Ri1 + RS
Avo1

Ri2

Ri2 + Ro1
Avo2

Ri3

Ri3 + Ro2
...AvoN

RL

RL + RoN



4 Equivalent Models



Determining Ri and Ro



Frequency Response

(This behaviour is not explained by the simple model! Capacitors
and/or inductors are needed.)



Linear Amplifier

Linear here means that there is no distortion of a fixed frequency
sinusoid. Equivalet in math-speak: the amplifier/filter output can
be modelled as a linear differential equation of the input signal. An
amplifier composed of but linear elements will behave like that,
including somewhat more complicated models than our first purely
resistive model ...



Single Time Constant Networks

STC netwoks are circuits that can be expressed as a first order linear
differential equation of the input. When the input voltage source
provides a signal the STC network is a filter with a specific transfer
function, i.e. a frequency dependent complex number that describes
how the spectrum of the input is modified at each ferequency.



Transfer Function

Transfer functions T (s) for linear electronic circuits can be written
as dividing two polynomials of s (for us s is simply short for jω).

T (s) =
a0 + a1s + ...+ amsm

1+ b1s + ...+ bnsn

T (s) is often written as products of first order terms in both
nominator and denominator in the following root form, which is
conveniently showing some properties of the Bode-plots. More of
that later.

T (s) = a0
(1+ s

z1
)(1+ s

z2
)...(1+ s

zm
)

(1+ s
ω1
)(1+ s

ω2
)...(1+ s

ωn
)



Transfer Function

The transfer function T (s) of a linear filter is
I the Laplace transform of its impulse reponse h(t).
I the Laplace transform of the differential equation describing

the I/O realtionship that is then solved for Vout(s)
Vin(s)

I (easiest!!!) the circuit diagram solved quite normally for Vout(s)
Vin(s)

by putting in impedances Z (s) for all linear elements according
to some simple rules (next page).



Impedances of Linear Circuit Elements

resistor: R
capacitor: 1

sC
inductor: sL

Ideal linearly dependent sources (e.g. the id = gmvgs sources in
small signal models of FETs) are left as they are.



Single Time Constant Transfer Functions



Bode Plot

1st Order Low-Pass Filter



Bode Plot

1st Order High-Pass Filter



Example



Characterizing Amplifiers by Transfer Characteristics



Capacitively Coupled Two Stage Amplifiers
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