INF3410/4411, Fall 2018

Philipp Häfliger hafliger@ifi.uio.no

Excerpt of Sedra/Smith Chapter 7: Integrated CMOS Amplifier Basics

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Content

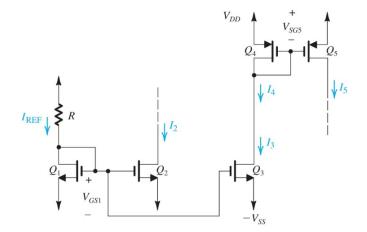
Bias Current Steering (book 7.2)

CS, CG, and cascode configuration (book 7.3-7.5)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

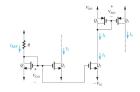
Improved Current Mirrors/Sources (book 7.6)

Content


Bias Current Steering (book 7.2)

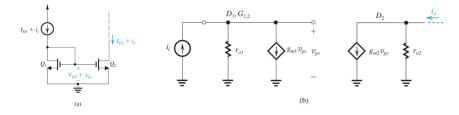
CS, CG, and cascode configuration (book 7.3-7.5)

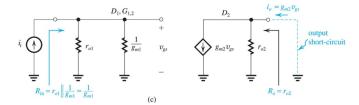
Improved Current Mirrors/Sources (book 7.6)


CMOS Current Steering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Computing R_{ref} CMOS Current Steering


(live on whitebord)

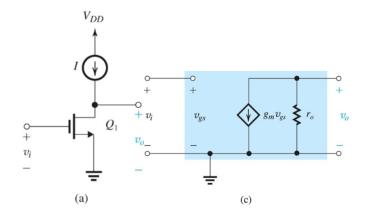


 $\begin{array}{c} & & \\$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

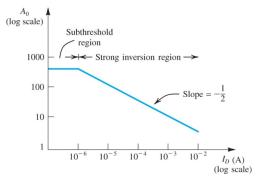
Dynamic Input Currents, Current Amplifier

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

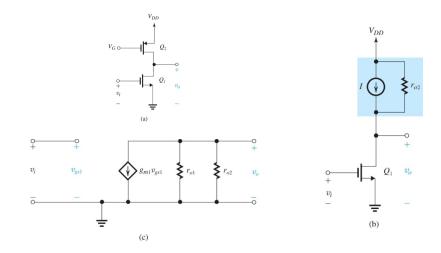

Bias Current Steering (book 7.2)

CS, CG, and cascode configuration (book 7.3-7.5)

Improved Current Mirrors/Sources (book 7.6)

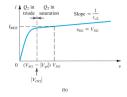


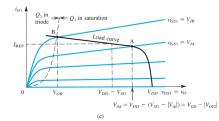
Intrinsic Gain from Small Signal

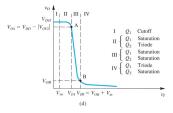

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Intrinsic Gain vs Bias Current

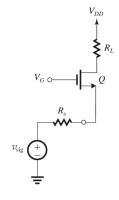
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで


CS Amplifier with Current-Source Load

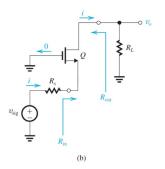



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

CS Amplifier Analysis

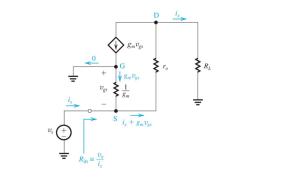


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?


Home Assignment last week: Inverter Small Signal Analysis

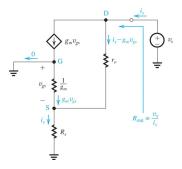
▲□▶ ▲圖▶ ★国▶ ★国▶ - 国 - のへで

CG amplifier revisited


(a)

イロト イロト イヨト イヨト

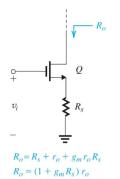
æ


Rin of a CG amplifier

$$v_x = (i_x + g_m v_{gs})r_o + i_x R_L \implies R_{in} \approx \frac{1}{g_m} + \frac{R_L}{g_m r_o}$$
 (7.54)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

R_{out} of a CG amplifier

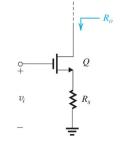


 $v_x = (i_x - g_m v_{gs})r_o + i_x R_S \Rightarrow R_{out} \approx r_o + (g_m r_o)R_s$ (7.58)

イロト イ押ト イヨト イ

CS with source degeneration no R_L

Good as current source, e.g in current mirror, but not so good as amplifier.



$$R_O pprox (1+g_m R_S) r_o$$

 $g_m
ightarrow g_m' = rac{g_m}{1+g_m R_s}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

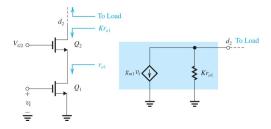
Much higher output resistance. Still no net-increase in gain!

CS with source degeneration with R_L

 $R_o = R_s + r_o + g_m r_o R_s$ $R_o \simeq (1 + g_m R_s) r_o$

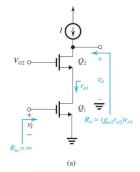
$$A_{v} = g'_{m}R_{O}\frac{R_{L}}{R_{L}+R_{O}}$$

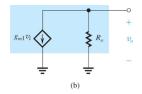
$$\approx g_{m}r_{o}\frac{R_{L}}{R_{L}+(1+g_{m}R_{S})r_{o}}$$


... and more degradation to A_v due to load R_L !

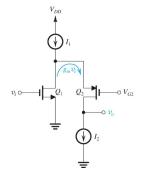
・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

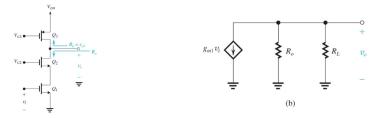
3


Cascode Amplifier


Can be looked upon as a CS and CG in series resulting in a *intrinsic* combined gain $A = g_{m1}r_{o1}g_{m2}r_{o2}$ (i.e. with a large load resistance), or a circuit where the CS serves as high quality voltage controlled current source delivering $i_d \approx g_{m1}v_i$ and the CG buffers that current to a high output resistance $\approx g_{m2}r_{o2}r_{o1}$.

ション ふゆ く 山 マ チャット しょうくしゃ

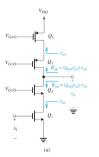

Cascode Amplifier with Infinite Load Resistance

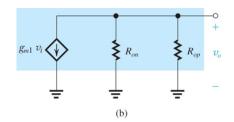

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Folded Cascode with Infinite Load Resistance

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Cascode Amplifier with Finite Load Resistance (1/2)


・ロッ ・雪 ・ ・ ヨ ・ ・


э

The load R_L must be of equal magnitude as R_O to get the benefit of the increased gain A_V ! So here with a simple pFET we are back to square one.

Cascode Amplifier with Finite Load Resistance (2/2)

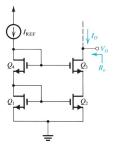
Better: employ a cascoded current source.

<ロト </p>

э

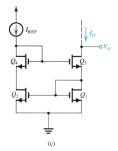
Dependency of Gain on R_L

Table 7.1	Gain Distribution in the MOS Cascode Amplifier for Various Values of R_L					
Case	R_L	$R_{\rm in2}$	R_{d1}	A_{v1}	A_{v2}	A_v
1	∞	∞	r _o	$-g_m r_o$	$g_m r_o$	$-(g_m r_o)^2$
2	$(g_m r_o) r_o$	r_o	$r_o/2$	$-\frac{1}{2}(g_m r_o)$ -2	$g_m r_o$	$-\frac{1}{2}(g_m r_o)^2$
3	r _o	$\frac{2}{g_m}$	$\frac{2}{g_m}$	-2	$\frac{1}{2}(g_m r_o)$	$-(g_m r_o)$
4	0	$\frac{1}{g_m}$	$\frac{1}{g_m}$	-1	0	0

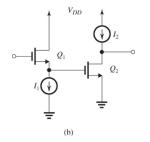

Bias Current Steering (book 7.2)

CS, CG, and cascode configuration (book 7.3-7.5)

Improved Current Mirrors/Sources (book 7.6)


Cascode Current Mirror

Increased output impedance, but quite a bit of output voltage headroom necessary ...


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Modified Wilson MOS Current Mirror

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ○

A CD-CS Amplifier

Larger bandwidth than simple CS amplifier (explained later in chapter 9).

(a)

ж