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MOSFET IC transfer function



BW and GB(P)

GB=BW ∗ AM

GB: gain bandwidth product, BW: bandwidth, AM : mid-band gain.
There is usually a trade-off between BW and AM . If this trade off is
inversely proportional, the GB is constant, e.g. in opamp feedback
configurations.



BW and GB(P) for CMOS integrated Circuits

For integrated circuits which normally have a pure low-pass
characteristics (i.e. no explicit AC-coupling at the input) you can
substitute AM with ADC , i.e. the gain at DC. And:

BW = fH = f−3dB

Where fH is the high frequency cutoff and is the frequency at which
point AM i reduced by -3dB, i.e. the signal power is reduced by 1

2 ,
as 10 log10

1
2 = 3.0



MOSFET ’Parasitic’ Capacitances Illustration



MOSFET ’Parasitic’ Capacitances Equations

Cgs = CoxW (
2
3
L + Lov ) (9.22)

Cgd = CoxWLov (9.23)

Csb/db =
Csb0/db0√
1+ VSB/DB

V0

(9.24/9.25)



High Frequency Small Signal Model (1/2)



High Frequency Small Signal Model (2/2)

With only the two most relevant parasitic capacitors.



Unity Gain Frequency fT

Short circuit current gain. A measure for the best case transistor
speed.

Neglecting the current through Cgd :

io
ii

=
gm

s(Cgs + Cgd )
(9.28)

fT =
gm

2π(Cgs + Cgd )
(9.29)



Trade-off fT vs Ao (i.e. GB)

fT =
gm

2π(Cgs + Cgd )
(9.29)

≈ 3µnVov

4πL2

A0 = gmro (7.40)

≈ 2
λVov

=
2L

λL︸︷︷︸
const

Vov



Summary CMOS HF Small Signal Model
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CS Amplifier HF small signal model



Using the Miller Effect

Note the simplyfying assumption that vo = gmrovgs , i.e. neglecting
feed forward contributions of igd which will still be very small
around fH and makes the following a quite exact approximation of
the dominant pole’s frequency fP ≈ fH



CS transfer function dominant Rsig(1/4)

vgs(s(Cgs + Ceq) +
1

R ′sig
) = vsig

1
R ′sig



CS transfer function dominant Rsig(2/4)

vgs

vsig
=

1
R′

sig

s(Cgs + Ceq) +
1

R′
sig

vgs

vsig
=

1
1+ sR ′sig (Cgs + Ceq)



CS transfer function dominant Rsig(3/4)

vo

vsig
=

AM

1+ s
ω0

(9.51)

ωH =
1

R ′sig (Cgs + Ceq)
(9.53)



CS transfer function dominant Rsig(4/4)



Interrupt: Transfer Function and Bode Plot



Transfer Function

The transfer function H(s) of a linear filter is
I the Laplace transform of its impulse reponse h(t).
I the Laplace transform of the differential equation describing

the I/O realtionship that is then solved for Vout(s)
Vin(s)

I (this lecture!!!) the circuit diagram solved quite normally for
Vout(s)
Vin(s)

by putting in impedances Z (s) for all linear elements
according to some simple rules.



Impedances of Linear Circuit Elements

resistor: R
capacitor: 1

sC
inductor: sL

Ideal sources (e.g. the id = gmvgs sources in small signal models of
FETs) are left as they are.



Transfer Function in Root Form

Transfer functions H(s) for linear electronic circuits can be written
as dividing two polynomials of s.

H(s) =
a0 + a1s + ...+ amsm

1+ b1s + ...+ bnsn

H(s) is often written as products of first order terms in both
nominator and denominator in the following root form, which is
conveniently showing some properties of the Bode-plots. More of
that later.

H(s) = a0
(1+ s

z1
)(1+ s

z2
)...(1+ s

zm
)

(1+ s
ω1
)(1+ s

ω2
)...(1+ s

ωn
)



Bode Plots

Plots of magnitude (e.g. |H(s)|) in dB and phase e.g. ∠H(s) or φ)
vs. log(ω).

In general for transfer functions with only real
poles and no zeros (pure low-pass): a) ω → 0+
|H(s)| is constant at the low frequency gain
and ∠H(s) = 0o b) for each pole as ω
increases the slope of |H(s)| increses by
− 20dB

decade c) each pole contributes -90o to the
phase, but in a smooth transistion so that at a
frequency exactly at the pole it is exactly -45o



General rules of thumb to use real zeros and poles for Bode
plots (1/3)

a) find a frequency ωmid with equal number k
of zeros and poles where
z1, ..., zk , ω1, ..., ωk < ωmid ⇒

|H(s)| ≈ K
|z(k+1)...|zm|
|ω(k+1)|...|ωn|

∠H(s) ≈ 0o

and the gradient of both |H(s)| and ∠H(s) is
zero



General rules of thumb to use real zeros and poles for Bode
plots (2/3)

b) moving from ωmid in the magnitude plot at
each |ωi | add -20dB/decade to the magnitude
gradient and for each |zi | add +20dB/decade
c) moving from ωmid in the phase plot to
higher frequencies at each ωi add -90o to the
phase in a smooth transition (respectively
−45o right at the poles) and vice versa towards
lower frequencies.



General rules of thumb to use real zeros and poles for Bode
plots (3/3)

d) For the zeros towards higher frequencies if
the nominater is of the form (1+ s

zi
) add +90o

and if its of the form (1− s
zi
) (refered to as

right half plain zero as the solution for s of
0 = (1− s

zi
) is positive) add -90o to the phase

in a smooth transition (i.e. respectively ±45o

right at the zeros) and vice versa towards lower
frequencies.



CS Frequency Response, Dominant CL (1/2)

vo(s(Cgd + CL) + GL) + gmvgs = vgssCgd

vo

vgs
=

sCgd − gm

s(Cgd + CL) + GL

= −gmRL
1− s Cgd

gm

s(Cgd + CL)RL + 1
(9.65)



CS Frequency Response, Dominant CL (2/2)

ωz =
gm

Cgd
(9.66)

ωp =
1

(Cgd + CL)RL
(9.67)

ωz

ωp
= gmRL

(
1+

CL

Cgd

)
(9.68)

ωt =
gm

CL + Cgd
(9.69)
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Notation in this Book

A(s) = AMFHs

FH(s) =
(1+ s

ωz1
)...(1+ s

ωzn
)

(1+ s
ωp1

)...(1+ s
ωpm

)



Dominant Pole Approximation

If ωp1 < 4ωp2 and ωp1 < 4ωz1 then

A(S) ≈ 1
1+ s

ωp1

ωH ≈ ωp1



An Approximation Without a Dominant Pole

2nd order example

|FH(ωH)|2 =
1
2

=
(1+ ω2

H
ω2

z1
)(1+ ω2

H
ω2

z2
)

(1+ ω2
H

ω2
p1
)(1+ ω2

H
ω2

p2
)

=
1+ ω2

H

(
1

ω2
z1

+ 1
ω2

z2

)
+ ω4

H

(
1

ω2
z1ω

2
z2

)
1+ ω2

H

(
1

ω2
p1

+ 1
ω2

p2

)
+ ω4

H

(
1

ω2
p1ω

2
p2

)
⇒ ωH ≈ 1√

1
ω2

p1
+ 1

ω2
p2
− 2

ω2
z1
− 2

ω2
z2

(9.76)



An Approximation Without a Dominant Pole

general:

ωH ≈ 1√
1

ω2
p1

+ 1
ω2

p2
...+ 1

ω2
pm
− 2

ω2
z1
− 2

ω2
z2
...− 2

ω2
zn

(9.77)

If ωp1 is much smaller than all other pole- and zero-frequencies this
reduces to the dominant pole approximation.



Open-Circuit Time Constants Method

ωH ≈
1∑

i CiRi

Where Ci are all capacitors in the circuit and Ri is the resistance
seen by Ci when the input signal source is zeroed and all other
capacitors are open circuited.



Open-Circuit Time Constants Method Example CS Amp



The Difficult One is Rgd

ix = − vgs

Rsig

=
vgs + vx

RL
+ vgsgm

=
vx

RL
− ixRsig

(
1
RL

+ gm

)
Rgd =

vx

ix
= [RL + Rsig (1+ gmRL)]



Open Circuit Time Constant

τH = RsigCgs + RLCL + [RL + Rsig (1+ gmRL)]Cgd

= Rsig
[
Cgs + (1+ gmRL)Cgd

]
+ RL

[
Cgd + CL

]
(9.88)

Previously:

ωH =
1

R ′sig (Cgs + (1+ gmRL)Cgd )
(9.53)

ωH =
1

(Cgd + CL)RL
(9.67)



Comparing Approximations

If you combine the prviously transfer functions for vgs
vsig

derived from
(9.46) and vo

vgs
from (9.65) as A(s) = vgs

vsig

vo
vgs

you get both of these
previous ωH as poles and can compute the combined ωH according
to (9.77):

τH =
1
ωH
≈
√

[R ′sig (Cgs + Ceq)]2 + [(Cgd + CL)RL]2 (9.77)

So the geometric mean rather than the sum ...
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CG Amplifier HF Response

NOTE: no Miller effect!



CG Amplifier HF Response T-model



CG Amplifier HF Response without ro

τp1 = Cgs

(
Rsig ||

1
gm

)
τp2 = (Cgd + CL)RL



CG Amplifier open circuit time-constant with ro for Cgs

τgs = Cgs

(
Rsig ||

ro + RL

gmro

)



CG Amplifier open circuit time-constant with ro for Cgd +CL

τgd = (Cgd + CL) (Rsig ||(ro + Rsig + gmroRsig ))



CG Amplifier HF Response Conclusion

No Miller effect that would cause low impedance at high
frequencies, but due to low input resistance the impedance is
already low at DC ⇒ low AM for Rsig > 0



Cascode Amplifier HF Response

τgs1 = Cgs1Rsig

τgd1 = Cgd1 [(1+ gm1Rd1)Rsig + Rd1]

where Rd1 = ro1||
ro2 + RL

gm2ro2

τgs2 = (Cgs2 + Cdb1)Rd1

τgd2 = (CL + Cgd2)(RL||(ro2 + ro1 + gm2ro2ro1))

τh ≈ τgs1 + τgd1 + τgs2 + τgd2



Cascode Amplifier HF Response

Rearranging τh grouping by the three nodes’
resistors:

τh ≈ Rsig
[
Cgs1 + Cgd1(1+ gm1Rd1)

]
+Rd1(Cgd1 + Cgs2 + Cdb1)

+(RL||Ro)(CL + Cgd2)

Thus, if Rsig > 0 and terms with Rsig are dominant
one can either get larger bandwidth at the same
DC gain than a CS amplifier when RL ≈ ro or get
more DC gain at the same bandwith than a CS
amplifier when RL ≈ gmr2

o or increase both
bandwith and DC gain to less than their maximum
by tuning RL somewhere inbetween.



Cascode Amplifier HF Response

Rearranging τh grouping by the three nodes’
resistors:

τh ≈ Rsig
[
Cgs1 + Cgd1(1+ gm1Rd1)

]
+Rd1(Cgd1 + Cgs2 + Cdb1)

+(RL||Ro)(CL + Cgd2)

With Rsig ≈ 0 one can trade higher BW for
reduced ADC or higher ADC for reduced BW
compared to a CS amp, keeping the unity gain
frequency (i.e. the GB) constant.



Cascode vs CS
CS:

ADC = −gm(ro ||RL)

τH = Rsig
[
Cgs + (1+ gm(ro ||RL))Cgd

]
+ (ro ||RL)

[
Cgd + CL

]
Cascode:

ADC = (−gm1(RO ||RL)

where RO = gm2ro2ro1

τH = Rsig
[
Cgs1 + Cgd1(1+ gm1Rd1)

]
+Rd1(Cgd1 + Cgs2 + Cdb1)

+(RL||Ro)(CL + Cgd2)

where Rd1 = ro1||
ro2 + RL

gm2ro2
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Source Follower HF Response

A(s) = AM

1+
(

s
ωz

)
1+ b1s + b2s2 = AM

1+
(

s
ωz

)
1+ 1

Q
s
ω0

+ s2

ω2
0



Source Follower Frequency Response Possibilities

ωp1,p2 =
− 1

Qω0
±
√

1
ω2

0Q2 − 4 1
ω2

0

2



Intuition for Resonance/Instability



Dependence on Q-factor (1/2)
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Dependence on Q-factor (2/2)
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HF Analysis of Current-Mirror-Loaded CMOS Amp (1/2)

Neglecting ro in current mirror:

GM = gm
1+ s Cm

2gm3

1+ s Cm
gm3

ωp2 =
gm3

Cm

ωz =
2gm3

Cm



HF Analysis of Current-Mirror-Loaded CMOS Amp (2/2)

vo = vidGMZo

vo

vid
= gm3Ro

(
1+ s Cm

2gm3

1+ s Cm
gm3

)(
1

Ro + 1
sCLRo

)

ωp1 =
1

CLRo

And ωp1 is usually clearly
dominant.
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