INF3410/4411, Fall 2018

Philipp Häfliger hafliger@ifi.uio.no

Excerpt of Sedra/Smith Chapter 9: Frequency Response of Basic CMOS Amplifiers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

High Frequency Small Signal Model of MOSFETs (book 9.2) High Frequency Response of CS and CE Amplifiers (book 9.3) Toolset for Frequency Analysis and Complete CS Analysis (9.4) CG and Cascode HF response (Book 9.5) Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

- High Frequency Response of CS and CE Amplifiers (book 9.3)
- Toolset for Frequency Analysis and Complete CS Analysis (9.4)

ション ふゆ アメリア メリア しょうくの

- CG and Cascode HF response (Book 9.5)
- Source follower HF response (Book 9.6)
- Differential Amp HF Analysis (book 9.7)

MOSFET IC transfer function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BW and GB(P)

$GB=BW * A_M$

GB: gain bandwidth product, BW: bandwidth, A_M : mid-band gain. There is usually a trade-off between BW and A_M . If this trade off is inversely proportional, the GB is constant, e.g. in opamp feedback configurations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For integrated circuits which normally have a pure low-pass characteristics (i.e. no explicit AC-coupling at the input) you can substitute A_M with A_{DC} , i.e. the gain at DC. And:

$$\mathsf{BW} = f_{\mathsf{H}} = f_{-3\mathsf{dB}}$$

Where f_H is the high frequency cutoff and is the frequency at which point A_M i reduced by -3dB, i.e. the signal power is reduced by $\frac{1}{2}$, as $10 \log_{10} \frac{1}{2} = 3.0$

ション ふゆ く 山 マ チャット しょうくしゃ

MOSFET 'Parasitic' Capacitances Illustration

・ロト ・個ト ・モト ・モト

æ

MOSFET 'Parasitic' Capacitances Equations

$$C_{gs} = C_{ox} W(\frac{2}{3}L + L_{ov}) \quad (9.22)$$
$$C_{gd} = C_{ox} WL_{ov} \quad (9.23)$$
$$C_{sb/db} = \frac{C_{sb0/db0}}{\sqrt{1 + \frac{V_{SB/DB}}{V_0}}} \quad (9.24/9.25)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

High Frequency Small Signal Model (1/2)

문 🛌 🗄

High Frequency Small Signal Model (2/2)

With only the two most relevant parasitic capacitors.

イロト 不得下 不同下 不同下

э

Unity Gain Frequency f_T

Short circuit current gain. A measure for the best case transistor speed.

Neglecting the current through C_{gd} :

$$\frac{i_o}{i_i} = \frac{g_m}{s(C_{gs} + C_{gd})}$$
(9.28)
$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})}$$
(9.29)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Trade-off f_T vs A_o (i.e. GB)

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})} (9.29)$$
$$\approx \frac{3\mu_n V_{ov}}{4\pi L^2}$$

$$A_{0} = g_{m}r_{o} (7.40)$$
$$\approx \frac{2}{\lambda V_{ov}}$$
$$= \frac{2L}{\frac{\lambda L}{\lambda L} V_{ov}}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Summary CMOS HF Small Signal Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3) Interrupt: Transfer Function and Bode Plot

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

CS Amplifier HF small signal model

(b)

ヘロト ヘアト ヘヨト ヘ

≣ । ≣

Using the Miller Effect

Note the simplyfying assumption that $v_o = g_m r_o v_{gs}$, i.e. neglecting feed forward contributions of i_{gd} which will still be very small around f_H and makes the following a quite exact approximation of the dominant pole's frequency $f_P \approx f_H$

CS transfer function dominant $R_{sig}(1/4)$

$$v_{gs}(s(C_{gs} + C_{eq}) + \frac{1}{R'_{sig}}) = v_{sig}\frac{1}{R'_{sig}}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

CS transfer function dominant $R_{sig}(2/4)$

$$\frac{v_{gs}}{v_{sig}} = \frac{\frac{1}{R'_{sig}}}{s(C_{gs} + C_{eq}) + \frac{1}{R'_{sig}}}$$
$$\frac{v_{gs}}{v_{sig}} = \frac{1}{1 + sR'_{sig}(C_{gs} + C_{eq})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

CS transfer function dominant $R_{sig}(3/4)$

$$\frac{v_o}{v_{sig}} = \frac{A_M}{1 + \frac{s}{\omega_0}} (9.51)$$
$$\omega_H = \frac{1}{R'_{sig}(C_{gs} + C_{eq})} (9.53)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

CS transfer function dominant $R_{sig}(4/4)$

(d)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Interrupt: Transfer Function and Bode Plot

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

The transfer function H(s) of a linear filter is

- the Laplace transform of its impulse reponse h(t).
- the Laplace transform of the differential equation describing the I/O realtionship that is then solved for Vin(s)
- (this lecture!!!) the circuit diagram solved quite normally for ^{Vout(s)}/_{Vin(s)} by putting in impedances Z(s) for all linear elements according to some simple rules.

ション ふゆ く 山 マ チャット しょうくしゃ

Impedances of Linear Circuit Elements

resistor: Rcapacitor: $\frac{1}{sC}$ inductor: sLIdeal sources (e.g. the $i_d = g_m v_{gs}$ sources in small signal models of FETs) are left as they are.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Transfer Function in Root Form

Transfer functions H(s) for linear electronic circuits can be written as dividing two polynomials of s.

$$H(s) = \frac{a_0 + a_1 s + \dots + a_m s^m}{1 + b_1 s + \dots + b_n s^n}$$

H(s) is often written as products of first order terms in both nominator and denominator in the following *root form*, which is conveniently showing some properties of the Bode-plots. More of that later.

$$H(s) = a_0 \frac{(1 + \frac{s}{z_1})(1 + \frac{s}{z_2})...(1 + \frac{s}{z_m})}{(1 + \frac{s}{\omega_1})(1 + \frac{s}{\omega_2})...(1 + \frac{s}{\omega_n})}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Bode Plots

Plots of magnitude (e.g. |H(s)|) in dB and phase e.g. $\angle H(s)$ or ϕ) vs. $\log(\omega)$.

In general for transfer functions with only real poles and no zeros (pure low-pass): a) $\omega \to 0_+$ |H(s)| is constant at the low frequency gain and $\angle H(s) = 0^\circ$ b) for each pole as ω increases the slope of |H(s)| increases by $-\frac{20dB}{\text{decade}}$ c) each pole contributes -90° to the phase, but in a smooth transistion so that at a frequency exactly at the pole it is exactly -45°

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

General rules of thumb to use real zeros and poles for Bode plots (1/3)

a) find a frequency ω_{mid} with equal number kof zeros and poles where $z_1, ..., z_k, \omega_1, ..., \omega_k < \omega_{mid} \Rightarrow$ $|H(s)| \approx K \frac{|z_{(k+1)}...|z_m|}{|\omega_{(k+1)}|...|\omega_n|}$ $\angle H(s) \approx 0^o$

and the gradient of both |H(s)| and $\angle H(s)$ is zero

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

General rules of thumb to use real zeros and poles for Bode plots (2/3)

b) moving from ω_{mid} in the magnitude plot at each $|\omega_i|$ add -20dB/decade to the magnitude gradient and for each $|z_i|$ add +20dB/decade c) moving from ω_{mid} in the phase plot to higher frequencies at each ω_i add -90° to the phase in a smooth transition (respectively -45° right *at* the poles) and vice versa towards lower frequencies.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 - のへで

General rules of thumb to use real zeros and poles for Bode plots (3/3)

d) For the zeros towards higher frequencies if the nominater is of the form $(1 + \frac{s}{z_i})$ add $+90^{\circ}$ and if its of the form $(1 - \frac{s}{z_i})$ (refered to as right half plain zero as the solution for *s* of $0 = (1 - \frac{s}{z_i})$ is positive) add -90° to the phase in a smooth transition (i.e. respectively $\pm 45^{\circ}$ right at the zeros) and vice versa towards lower frequencies.

・ロッ ・雪 ・ ・ ヨ ・ ・

CS Frequency Response, Dominant C_L (1/2)

$$v_o(s(C_{gd}+C_L)+G_L)+g_mv_{gs}=v_{gs}sC_{gd}$$

$$\frac{v_o}{v_{gs}} = \frac{sC_{gd} - g_m}{s(C_{gd} + C_L) + G_L} \\ = -g_m R_L \frac{1 - s\frac{C_{gd}}{g_m}}{s(C_{gd} + C_L)R_L + 1}$$
(9.65)

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

CS Frequency Response, Dominant C_L (2/2)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣ん()~

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

ション ふゆ アメリア メリア しょうくの

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

Notation in this Book

$$egin{aligned} A(s) &= A_M F_H s \ F_H(s) &= rac{\left(1+rac{s}{\omega_{z1}}
ight)...\left(1+rac{s}{\omega_{zn}}
ight)}{\left(1+rac{s}{\omega_{
ho 1}}
ight)...\left(1+rac{s}{\omega_{
ho pm}}
ight)} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dominant Pole Approximation

If $\omega_{p1} < 4\omega_{p2}$ and $\omega_{p1} < 4\omega_{z1}$ then

$$egin{aligned} \mathcal{A}(\mathcal{S}) &pprox rac{1}{1+rac{s}{\omega_{p1}}} \ &\omega_{\mathcal{H}} &pprox \omega_{p1} \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

An Approximation Without a Dominant Pole

2nd order example

$$\begin{aligned} F_{H}(\omega_{H})|^{2} &= \frac{1}{2} = \frac{(1 + \frac{\omega_{H}^{2}}{\omega_{z1}^{2}})(1 + \frac{\omega_{H}^{2}}{\omega_{z2}^{2}})}{(1 + \frac{\omega_{H}^{2}}{\omega_{p1}^{2}})(1 + \frac{\omega_{H}^{2}}{\omega_{p2}^{2}})} \\ &= \frac{1 + \omega_{H}^{2}\left(\frac{1}{\omega_{z1}^{2}} + \frac{1}{\omega_{z2}^{2}}\right) + \omega_{H}^{4}\left(\frac{1}{\omega_{z1}^{2}\omega_{z2}^{2}}\right)}{1 + \omega_{H}^{2}\left(\frac{1}{\omega_{p1}^{2}} + \frac{1}{\omega_{p2}^{2}}\right) + \omega_{H}^{4}\left(\frac{1}{\omega_{p1}^{2}\omega_{p2}^{2}}\right)} \\ &\Rightarrow \omega_{H} \approx \frac{1}{\sqrt{\frac{1}{\omega_{p1}^{2}} + \frac{1}{\omega_{p2}^{2}} - \frac{2}{\omega_{z1}^{2}} - \frac{2}{\omega_{z2}^{2}}}} \quad (9.76) \end{aligned}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

An Approximation Without a Dominant Pole

$$\omega_{H} \approx \frac{1}{\sqrt{\frac{1}{\omega_{p1}^{2}} + \frac{1}{\omega_{p2}^{2}} \dots + \frac{1}{\omega_{pm}^{2}} - \frac{2}{\omega_{z1}^{2}} - \frac{2}{\omega_{z2}^{2}} \dots - \frac{2}{\omega_{zn}^{2}}}} (9.77)$$

If ω_{p1} is much smaller than all other pole- and zero-frequencies this reduces to the dominant pole approximation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open-Circuit Time Constants Method

$$\omega_H \approx \frac{1}{\sum_i C_i R_i}$$

Where C_i are all capacitors in the circuit and R_i is the resistance seen by C_i when the input signal source is zeroed and all other capacitors are open circuited.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Open-Circuit Time Constants Method Example CS Amp

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The Difficult One is R_{gd}

$$i_{x} = -\frac{v_{gs}}{R_{sig}}$$

$$= \frac{v_{gs} + v_{x}}{R_{L}} + v_{gs}g_{m}$$

$$= \frac{v_{x}}{R_{L}} - i_{x}R_{sig}\left(\frac{1}{R_{L}} + g_{m}\right)$$

$$R_{gd} = \frac{v_{x}}{i_{x}} = [R_{L} + R_{sig}(1 + g_{m}R_{L})]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Open Circuit Time Constant

$$\tau_{H} = R_{sig} C_{gs} + R_{L} C_{L} + [R_{L} + R_{sig} (1 + g_{m} R_{L})] C_{gd}$$

= $R_{sig} [C_{gs} + (1 + g_{m} R_{L}) C_{gd}] + R_{L} [C_{gd} + C_{L}]$ (9.88)

Previously:

$$\omega_{H} = \frac{1}{R'_{sig}(C_{gs} + (1 + g_{m}R_{L})C_{gd})} (9.53)$$

$$\omega_{H} = \frac{1}{(C_{gd} + C_{L})R_{L}} (9.67)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Comparing Approximations

If you combine the prviously transfer functions for $\frac{v_{gs}}{v_{sig}}$ derived from (9.46) and $\frac{v_o}{v_{gs}}$ from (9.65) as $A(s) = \frac{v_{gs}}{v_{sig}} \frac{v_o}{v_{gs}}$ you get both of these previous ω_H as poles and can compute the combined ω_H according to (9.77):

$$\tau_{H} = \frac{1}{\omega_{H}} \approx \sqrt{[R'_{sig}(C_{gs} + C_{eq})]^{2} + [(C_{gd} + C_{L})R_{L}]^{2}} \quad (9.77)$$

ション ふゆ く 山 マ チャット しょうくしゃ

So the geometric mean rather than the sum ...

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

(日) (四) (日) (日) (日)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

CG Amplifier HF Response

・ロト ・個ト ・モト ・モト

æ.

NOTE: no Miller effect!

CG Amplifier HF Response T-model

イロト イポト イヨト イヨト

æ

CG Amplifier HF Response without ro

$$au_{p1} = \mathcal{C}_{gs}\left(\mathcal{R}_{sig}||rac{1}{g_m}
ight) \ \ au_{p2} = (\mathcal{C}_{gd} + \mathcal{C}_L)\mathcal{R}_L$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

CG Amplifier open circuit time-constant with r_o for C_{gs}

$$\tau_{gs} = C_{gs} \left(R_{sig} || \frac{r_o + R_L}{g_m r_o} \right)$$

(a)

æ

CG Amplifier open circuit time-constant with r_o for $C_{gd} + C_L$

$$\tau_{gd} = (C_{gd} + C_L)(R_{sig}||(r_o + R_{sig} + g_m r_o R_{sig}))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

CG Amplifier HF Response Conclusion

No Miller effect that would cause low impedance at high frequencies, but due to low input resistance the impedance is already low at DC \Rightarrow low A_M for $R_{sig} > 0$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Cascode Amplifier HF Response

・ロト ・ 一下 ・ ・ ヨト ・ ・ ヨトー

Cascode Amplifier HF Response

Rearranging τ_h grouping by the three nodes' resistors:

$$\begin{aligned} \tau_h &\approx & R_{sig} \left[C_{gs1} + C_{gd1} (1 + g_{m1} R_{d1}) \right] \\ &+ R_{d1} (C_{gd1} + C_{gs2} + C_{db1}) \\ &+ (R_L || R_o) (C_L + C_{gd2}) \end{aligned}$$

Thus, if $R_{sig} > 0$ and terms with R_{sig} are dominant one can either get larger bandwidth at the same DC gain than a CS amplifier when $R_L \approx r_o$ or get more DC gain at the same bandwith than a CS amplifier when $R_L \approx g_m r_o^2$ or increase both bandwith and DC gain to less than their maximum by tuning R_L somewhere inbetween.

Cascode Amplifier HF Response

Rearranging τ_h grouping by the three nodes' resistors:

$$\begin{aligned} \tau_h &\approx & R_{sig} \left[C_{gs1} + C_{gd1} (1 + g_{m1} R_{d1}) \right] \\ &+ R_{d1} (C_{gd1} + C_{gs2} + C_{db1}) \\ &+ (R_L || R_o) (C_L + C_{gd2}) \end{aligned}$$

With $R_{sig} \approx 0$ one can trade higher BW for reduced A_{DC} or higher A_{DC} for reduced BW compared to a CS amp, keeping the unity gain frequency (i.e. the GB) constant.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

$\mathsf{Cascode} \ \mathsf{vs} \ \mathsf{CS}$

CS:

$$\begin{array}{rcl} A_{DC} &=& -g_m(r_o||R_L) \\ \tau_H &=& R_{sig} \left[C_{gs} + \left(1 + g_m(r_o||R_L)\right) C_{gd} \right] + \left(r_o||R_L\right) \left[C_{gd} + C_L \right] \end{array}$$

Cascode:

$$A_{DC} = (-g_{m1}(R_O||R_L))$$

where $R_O = g_{m2}r_{o2}r_{o1}$
 $\tau_H = R_{sig} [C_{gs1} + C_{gd1}(1 + g_{m1}R_{d1})]$
 $+R_{d1}(C_{gd1} + C_{gs2} + C_{db1})$
 $+(R_L||R_o)(C_L + C_{gd2})$
where $R_{d1} = r_{o1}||\frac{r_{o2} + R_L}{g_{m2}r_{o2}}$

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

- 日本 - 4 日本 - 4 日本 - 日本

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

Source Follower HF Response

(a)

$$A(s) = A_M \frac{1 + \left(\frac{s}{\omega_z}\right)}{1 + b_1 s + b_2 s^2} = A_M \frac{1 + \left(\frac{s}{\omega_z}\right)}{1 + \frac{1}{Q}\frac{s}{\omega_0} + \frac{s^2}{\omega_0^2}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Source Follower Frequency Response Possibilities

(b)

$$\omega_{p1,p2} = \frac{-\frac{1}{Q\omega_0} \pm \sqrt{\frac{1}{\omega_0^2 Q^2} - 4\frac{1}{\omega_0^2}}}{2}$$

イロト イポト イヨト イヨト

Intuition for Resonance/Instability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dependence on Q-factor (1/2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Dependence on Q-factor (2/2)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

ション ふゆ アメリア メリア しょうくの

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

HF Analysis of Current-Mirror-Loaded CMOS Amp (1/2)

Neglecting r_o in current mirror:

$$G_M = g_m \frac{1 + s \frac{C_m}{2g_{m3}}}{1 + s \frac{C_m}{g_{m3}}}$$
$$\omega_{p2} = \frac{g_{m3}}{C_m}$$
$$\omega_z = \frac{2g_{m3}}{C_m}$$

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q ()~

HF Analysis of Current-Mirror-Loaded CMOS Amp (2/2)

$$v_o = v_{id} G_M Z_o$$

$$\frac{v_o}{v_{id}} = g_{m3} R_o \left(\frac{1 + s \frac{C_m}{2g_{m3}}}{1 + s \frac{C_m}{g_{m3}}} \right) \left(\frac{1}{R_o + s \frac{C_m}{g_{m3}}} \right)$$

$$\omega_{\rho 1} = \frac{1}{C_L R_o}$$

イロト イポト イヨト イヨト

And ω_{p1} is usually clearly dominant.