INF3410/4411, Fall 2018

Philipp Häfliger
hafliger@ifi.uio.no

Excerpt of Sedra/Smith Chapter 9: Frequency Response of
Basic CMOS Amplifiers

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

MOSFET IC transfer function

$B W$ and $G B(P)$

$$
\mathrm{GB}=\mathrm{BW} * A_{M}
$$

GB: gain bandwidth product, BW: bandwidth, A_{M} : mid-band gain. There is usually a trade-off between BW and A_{M}. If this trade off is inversely proportional, the GB is constant, e.g. in opamp feedback configurations.

BW and $G B(P)$ for CMOS integrated Circuits

For integrated circuits which normally have a pure low-pass characteristics (i.e. no explicit AC-coupling at the input) you can substitute A_{M} with $A_{D C}$, i.e. the gain at DC. And:

$$
\mathrm{BW}=f_{H}=f_{-3 \mathrm{~dB}}
$$

Where f_{H} is the high frequency cutoff and is the frequency at which point A_{M} i reduced by -3 dB , i.e. the signal power is reduced by $\frac{1}{2}$, as $10 \log _{10} \frac{1}{2}=3.0$

MOSFET 'Parasitic' Capacitances Illustration

MOSFET 'Parasitic' Capacitances Equations

$$
\begin{aligned}
& C_{g s}=C_{o x} W\left(\frac{2}{3} L+L_{o v}\right)(9.22) \\
& C_{g d}=C_{o x} W L_{o v}(9.23) \\
& C_{s b / d b}=\frac{C_{s b 0 / d b 0}}{\sqrt{1+\frac{V_{S B / D B}}{V_{0}}}}(9.24 / 9.25)
\end{aligned}
$$

High Frequency Small Signal Model (1/2)

(a)

(b)

High Frequency Small Signal Model (2/2)

With only the two most relevant parasitic capacitors.

(c)

(d)

Unity Gain Frequency f_{T}

Short circuit current gain. A measure for the best case transistor speed.

Neglecting the current through $C_{g d}$:

$$
\begin{aligned}
\frac{i_{o}}{i_{i}} & =\frac{g_{m}}{s\left(C_{g s}+C_{g d}\right)} \\
f_{T} & =\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}
\end{aligned}
$$

Trade-off f_{T} vs A_{o} (i.e. GB)

$$
\begin{aligned}
f_{T} & =\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}(9.29) \\
& \approx \frac{3 \mu_{n} V_{o v}}{4 \pi L^{2}} \\
A_{0} & =g_{m r_{o}}(7.40) \\
& \approx \frac{2}{\frac{\lambda V_{o v}}{}} \\
& =\underbrace{\frac{2 L}{\lambda L} V_{o v}}_{\text {const }}
\end{aligned}
$$

Summary CMOS HF Small Signal Model

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3) Interrupt: Transfer Function and Bode Plot

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

CS Amplifier HF small signal model

(b)

Using the Miller Effect

(c)

Note the simplyfying assumption that $v_{o}=g_{m} r_{o} v_{g s}$, i.e. neglecting feed forward contributions of $i_{g d}$ which will still be very small around f_{H} and makes the following a quite exact approximation of the dominant pole's frequency $f_{P} \approx f_{H}$

CS transfer function dominant $R_{\text {sig }}(1 / 4)$

(c)

$$
v_{g s}\left(s\left(C_{g s}+C_{e q}\right)+\frac{1}{R_{s i g}^{\prime}}\right)=v_{s i g} \frac{1}{R_{s i g}^{\prime}}
$$

CS transfer function dominant $R_{\text {sig }}(2 / 4)$

(c)

$$
\begin{aligned}
\frac{v_{g s}}{v_{s i g}} & =\frac{\frac{1}{R_{s i g}^{\prime}}}{s\left(C_{g s}+C_{e q}\right)+\frac{1}{R_{s i g}^{\prime}}} \\
\frac{v_{g s}}{v_{s i g}} & =\frac{1}{1+s R_{s i g}^{\prime}\left(C_{g s}+C_{e q}\right)}
\end{aligned}
$$

CS transfer function dominant $R_{\text {sig }}(3 / 4)$

(c)

$$
\begin{aligned}
\frac{v_{o}}{v_{s i g}} & =\frac{A_{M}}{1+\frac{s}{\omega_{0}}}(9.51) \\
\omega_{H} & =\frac{1}{R_{s i g}^{\prime}\left(C_{g s}+C_{e q}\right)}
\end{aligned}
$$

CS transfer function dominant $R_{\text {sig }}(4 / 4)$

(d)

Interrupt: Transfer Function and Bode Plot

Transfer Function

The transfer function $H(s)$ of a linear filter is

- the Laplace transform of its impulse reponse $h(t)$.
- the Laplace transform of the differential equation describing the I/O realtionship that is then solved for $\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}$
- (this lecture!!!) the circuit diagram solved quite normally for $\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}$ by putting in impedances $Z(s)$ for all linear elements according to some simple rules.

Impedances of Linear Circuit Elements

resistor: $\quad R$
capacitor: $\frac{1}{s C}$
inductor: $s L$
Ideal sources (e.g. the $i_{d}=g_{m} v_{g s}$ sources in small signal models of FETs) are left as they are.

Transfer Function in Root Form

Transfer functions $H(s)$ for linear electronic circuits can be written as dividing two polynomials of s.

$$
H(s)=\frac{a_{0}+a_{1} s+\ldots+a_{m} s^{m}}{1+b_{1} s+\ldots+b_{n} s^{n}}
$$

$H(s)$ is often written as products of first order terms in both nominator and denominator in the following root form, which is conveniently showing some properties of the Bode-plots. More of that later.

$$
H(s)=a_{0} \frac{\left(1+\frac{s}{z_{1}}\right)\left(1+\frac{s}{z_{2}}\right) \ldots\left(1+\frac{s}{z_{m}}\right)}{\left(1+\frac{s}{\omega_{1}}\right)\left(1+\frac{s}{\omega_{2}}\right) \ldots\left(1+\frac{s}{\omega_{n}}\right)}
$$

Bode Plots

Plots of magnitude (e.g. $|H(s)|$) in dB and phase e.g. $\angle H(s)$ or ϕ) vs. $\log (\omega)$.

In general for transfer functions with only real poles and no zeros (pure low-pass): a) $\omega \rightarrow 0_{+}$ $|H(s)|$ is constant at the low frequency gain and $\angle H(s)=0^{\circ}$ b) for each pole as ω increases the slope of $|H(s)|$ increses by $-\frac{20 d B}{\text { decade }}$ c) each pole contributes -90° to the phase, but in a smooth transistion so that at a frequency exactly at the pole it is exactly -45°

General rules of thumb to use real zeros and poles for Bode plots (1/3)
a) find a frequency $\omega_{\text {mid }}$ with equal number k of zeros and poles where

$$
z_{1}, \ldots, z_{k}, \omega_{1}, \ldots, \omega_{k}<\omega_{m i d} \Rightarrow
$$

$$
\begin{aligned}
&|H(s)| \approx K \frac{\left|z_{(k+1)} \ldots\right| z_{m} \mid}{\left|\omega_{(k+1)}\right| \ldots\left|\omega_{n}\right|} \\
& \angle H(s) \approx 0^{\circ}
\end{aligned}
$$

and the gradient of both $|H(s)|$ and $\angle H(s)$ is zero

General rules of thumb to use real zeros and poles for Bode plots (2/3)

b) moving from $\omega_{\text {mid }}$ in the magnitude plot at each $\left|\omega_{i}\right|$ add $-20 \mathrm{~dB} /$ decade to the magnitude gradient and for each $\left|z_{i}\right|$ add $+20 \mathrm{~dB} /$ decade c) moving from $\omega_{\text {mid }}$ in the phase plot to higher frequencies at each ω_{i} add -90° to the phase in a smooth transition (respectively -45° right at the poles) and vice versa towards lower frequencies.

General rules of thumb to use real zeros and poles for Bode plots (3/3)

d) For the zeros towards higher frequencies if the nominater is of the form $\left(1+\frac{s}{z_{i}}\right)$ add $+90^{\circ}$ and if its of the form $\left(1-\frac{s}{z_{i}}\right)$ (refered to as right half plain zero as the solution for s of $0=\left(1-\frac{s}{z_{i}}\right)$ is positive) add -90° to the phase in a smooth transition (i.e. respectively $\pm 45^{\circ}$ right at the zeros) and vice versa towards lower frequencies.

CS Frequency Response, Dominant $C_{L}(1 / 2)$

(a)

$$
v_{o}\left(s\left(C_{g d}+C_{L}\right)+G_{L}\right)+g_{m} v_{g s}=v_{g s} s C_{g d}
$$

$$
\frac{v_{o}}{v_{g s}}=\frac{s C_{g d}-g_{m}}{s\left(C_{g d}+C_{L}\right)+G_{L}}
$$

$$
=-g_{m} R_{L} \frac{1-s \frac{C_{g d}}{g_{m}}}{s\left(C_{g d}+C_{L}\right) R_{L}+1}(9.65)
$$

CS Frequency Response, Dominant $C_{L}(2 / 2)$

$$
\begin{align*}
& \omega_{z}=\frac{g_{m}}{C_{g d}}(9.66) \\
& \omega_{p}=\frac{1}{\left(C_{g d}+C_{L}\right) R_{L}} \\
& \frac{\omega_{z}}{\omega_{p}}=g_{m} R_{L}\left(1+\frac{C_{L}}{C_{g d}}\right) \tag{9.68}\\
& \omega_{t}=\frac{g_{m}}{C_{L}+C_{g d}}
\end{align*}
$$

(c)

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

Notation in this Book

$$
\begin{gathered}
A(s)=A_{M} F_{H} s \\
F_{H}(s)=\frac{\left(1+\frac{s}{\omega_{21}}\right) \ldots\left(1+\frac{s}{\omega_{2 z}}\right)}{\left(1+\frac{s}{\omega_{p 1}}\right) \ldots\left(1+\frac{s}{\omega_{p m}}\right)}
\end{gathered}
$$

Dominant Pole Approximation

If $\omega_{p 1}<4 \omega_{p 2}$ and $\omega_{p 1}<4 \omega_{z 1}$ then

$$
\begin{aligned}
A(S) & \approx \frac{1}{1+\frac{s}{\omega_{p 1}}} \\
\omega_{H} & \approx \omega_{p 1}
\end{aligned}
$$

An Approximation Without a Dominant Pole

$2^{\text {nd }}$ order example

$$
\begin{align*}
\left|F_{H}\left(\omega_{H}\right)\right|^{2}=\frac{1}{2} & =\frac{\left(1+\frac{\omega_{H}^{2}}{\omega_{21}^{2}}\right)\left(1+\frac{\omega_{H}^{2}}{\omega_{z 2}^{2}}\right)}{\left(1+\frac{\omega_{H}^{2}}{\omega_{p 1}^{2}}\right)\left(1+\frac{\omega_{H}^{2}}{\omega_{p 2}^{2}}\right)} \\
& =\frac{1+\omega_{H}^{2}\left(\frac{1}{\omega_{z 1}^{2}}+\frac{1}{\omega_{z 2}^{2}}\right)+\omega_{H}^{4}\left(\frac{1}{\omega_{z 1}^{2} \omega_{z 2}^{2}}\right)}{1+\omega_{H}^{2}\left(\frac{1}{\omega_{p 1}^{2}}+\frac{1}{\omega_{p 2}^{2}}\right)+\omega_{H}^{4}\left(\frac{1}{\omega_{p 1}^{2} \omega_{p 2}^{2}}\right)} \\
\Rightarrow \omega_{H} & \approx \frac{1}{\sqrt{\frac{1}{\omega_{p 1}^{2}}+\frac{1}{\omega_{p 2}^{2}}-\frac{2}{\omega_{z 1}^{2}}-\frac{2}{\omega_{z 2}^{2}}}} \tag{9.76}
\end{align*}
$$

An Approximation Without a Dominant Pole

general:

$$
\begin{equation*}
\omega_{H} \approx \frac{1}{\sqrt{\frac{1}{\omega_{p 1}^{2}}+\frac{1}{\omega_{p 2}^{2}} \ldots+\frac{1}{\omega_{p m}^{2}}-\frac{2}{\omega_{z 1}^{2}}-\frac{2}{\omega_{z 2}^{2}} \ldots-\frac{2}{\omega_{z n}^{2}}}} \tag{9.77}
\end{equation*}
$$

If $\omega_{p 1}$ is much smaller than all other pole- and zero-frequencies this reduces to the dominant pole approximation.

Open-Circuit Time Constants Method

$$
\omega_{H} \approx \frac{1}{\sum_{i} C_{i} R_{i}}
$$

Where C_{i} are all capacitors in the circuit and R_{i} is the resistance seen by C_{i} when the input signal source is zeroed and all other capacitors are open circuited.

Open-Circuit Time Constants Method Example CS Amp

The Difficult One is $R_{g d}$

(b)

$$
\begin{aligned}
i_{x} & =-\frac{v_{g s}}{R_{s i g}} \\
& =\frac{v_{g s}+v_{x}}{R_{L}}+v_{g s} g_{m} \\
& =\frac{v_{x}}{R_{L}}-i_{x} R_{s i g}\left(\frac{1}{R_{L}}+g_{m}\right)
\end{aligned}
$$

$$
R_{g d}=\frac{v_{x}}{i_{x}}=\left[R_{L}+R_{\text {sig }}\left(1+g_{m} R_{L}\right)\right]
$$

Open Circuit Time Constant

$$
\begin{aligned}
\tau_{H} & =R_{s i g} C_{g s}+R_{L} C_{L}+\left[R_{L}+R_{s i g}\left(1+g_{m} R_{L}\right)\right] C_{g d} \\
& =R_{s i g}\left[C_{g s}+\left(1+g_{m} R_{L}\right) C_{g d}\right]+R_{L}\left[C_{g d}+C_{L}\right]
\end{aligned}
$$

Previously:

$$
\begin{aligned}
\omega_{H} & =\frac{1}{R_{s i g}^{\prime}\left(C_{g s}+\left(1+g_{m} R_{L}\right) C_{g d}\right)} \\
\omega_{H} & =\frac{1}{\left(C_{g d}+C_{L}\right) R_{L}}
\end{aligned}
$$

Comparing Approximations

If you combine the prviously transfer functions for $\frac{v_{g s}}{v_{s i g}}$ derived from (9.46) and $\frac{v_{o}}{v_{g s}}$ from (9.65) as $A(s)=\frac{v_{g s}}{v_{s i g}} \frac{v_{o}}{v_{g s}}$ you get both of these previous ω_{H} as poles and can compute the combined ω_{H} according to (9.77):

$$
\begin{equation*}
\tau_{H}=\frac{1}{\omega_{H}} \approx \sqrt{\left[R_{s i g}^{\prime}\left(C_{g s}+C_{e q}\right)\right]^{2}+\left[\left(C_{g d}+C_{L}\right) R_{L}\right]^{2}} \tag{9.77}
\end{equation*}
$$

So the geometric mean rather than the sum ...

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

CG Amplifier HF Response

(a)

NOTE: no Miller effect!

CG Amplifier HF Response T-model

(b)

CG Amplifier HF Response without r_{0}

$$
\tau_{p 1}=C_{g s}\left(R_{s i g} \| \frac{1}{g_{m}}\right) \quad \tau_{p 2}=\left(C_{g d}+C_{L}\right) R_{L}
$$

CG Amplifier open circuit time-constant with r_{0} for $C_{g s}$

$$
\tau_{g s}=C_{g s}\left(R_{s i g} \| \frac{r_{o}+R_{L}}{g_{m} r_{o}}\right)
$$

CG Amplifier open circuit time-constant with r_{0} for $C_{g d}+C_{L}$

(e)
$\tau_{g d}=\left(C_{g d}+C_{L}\right)\left(R_{s i g} \|\left(r_{o}+R_{s i g}+g_{m} r_{o} R_{s i g}\right)\right)$

CG Amplifier HF Response Conclusion

No Miller effect that would cause low impedance at high frequencies, but due to low input resistance the impedance is already low at $\mathrm{DC} \Rightarrow$ low A_{M} for $R_{\text {sig }}>0$

Cascode Amplifier HF Response

$$
\begin{aligned}
\tau_{g s 1}= & C_{g s 1} R_{s i g} \\
\tau_{g d 1}= & C_{g d 1}\left[\left(1+g_{m 1} R_{d 1}\right) R_{s i g}+R_{d 1}\right] \\
& \text { where } R_{d 1}=r_{o 1} \| \frac{r_{o 2}+R_{L}}{g_{m 2} r_{o 2}} \\
\tau_{g s 2}= & \left(C_{g s 2}+C_{d b 1}\right) R_{d 1} \\
\tau_{g d 2}= & \left(C_{L}+C_{g d 2}\right)\left(R_{L} \|\left(r_{o 2}+r_{o 1}+g_{m 2} r_{o 2} r_{o 1}\right)\right) \\
\tau_{h} \approx & \tau_{g s 1}+\tau_{g d 1}+\tau_{g s 2}+\tau_{g d 2}
\end{aligned}
$$

Cascode Amplifier HF Response

Rearranging τ_{h} grouping by the three nodes' resistors:

$$
\begin{aligned}
\tau_{h} \approx & R_{s i g}\left[C_{g s 1}+C_{g d 1}\left(1+g_{m 1} R_{d 1}\right)\right] \\
& +R_{d 1}\left(C_{g d 1}+C_{g s 2}+C_{d b 1}\right) \\
& +\left(R_{L} \| R_{o}\right)\left(C_{L}+C_{g d 2}\right)
\end{aligned}
$$

Thus, if $R_{\text {sig }}>0$ and terms with $R_{\text {sig }}$ are dominant one can either get larger bandwidth at the same DC gain than a CS amplifier when $R_{L} \approx r_{0}$ or get more DC gain at the same bandwith than a CS amplifier when $R_{L} \approx g_{m} r_{o}^{2}$ or increase both bandwith and DC gain to less than their maximum by tuning R_{L} somewhere inbetween.

Cascode Amplifier HF Response

Rearranging τ_{h} grouping by the three nodes' resistors:

$$
\begin{aligned}
\tau_{h} \approx & R_{s i g}\left[C_{g s 1}+C_{g d 1}\left(1+g_{m 1} R_{d 1}\right)\right] \\
& +R_{d 1}\left(C_{g d 1}+C_{g s 2}+C_{d b 1}\right) \\
& +\left(R_{L} \| R_{o}\right)\left(C_{L}+C_{g d 2}\right)
\end{aligned}
$$

With $R_{\text {sig }} \approx 0$ one can trade higher BW for reduced $A_{D C}$ or higher $A_{D C}$ for reduced BW compared to a CS amp, keeping the unity gain frequency (i.e. the GB) constant.

Cascode vs CS

CS:

$$
\begin{aligned}
A_{D C} & =-g_{m}\left(r_{0} \| R_{L}\right) \\
\tau_{H} & =R_{s i g}\left[C_{g s}+\left(1+g_{m}\left(r_{o} \| R_{L}\right)\right) C_{g d}\right]+\left(r_{o} \| R_{L}\right)\left[C_{g d}+C_{L}\right]
\end{aligned}
$$

Cascode:

$$
\begin{aligned}
A_{D C}= & \left(-g_{m 1}\left(R_{O} \| R_{L}\right)\right. \\
& \text { where } R_{O}=g_{m 2} r_{o 2} r_{o 1} \\
\tau_{H}= & R_{s i g}\left[C_{g s 1}+C_{g d 1}\left(1+g_{m 1} R_{d 1}\right)\right] \\
& +R_{d 1}\left(C_{g d 1}+C_{g s 2}+C_{d b 1}\right) \\
& +\left(R_{L} \| R_{o}\right)\left(C_{L}+C_{g d 2}\right) \\
& \text { where } R_{d 1}=r_{o 1} \| \frac{r_{o 2}+R_{L}}{g_{m 2} r_{o 2}}
\end{aligned}
$$

Content

> High Frequency Small Signal Model of MOSFETs (book 9.2)

> High Frequency Response of CS and CE Amplifiers (book 9.3)

> Toolset for Frequency Analysis and Complete CS Analysis (9.4)

> CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

Source Follower HF Response

(a)

$$
A(s)=A_{M} \frac{1+\left(\frac{s}{\omega_{z}}\right)}{1+b_{1} s+b_{2} s^{2}}=A_{M} \frac{1+\left(\frac{s}{\omega_{z}}\right)}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\frac{s^{2}}{\omega_{0}^{2}}}
$$

Source Follower Frequency Response Possibilities

(b)

$$
\omega_{p 1, p 2}=\frac{-\frac{1}{Q \omega_{0}} \pm \sqrt{\frac{1}{\omega_{0}^{2} Q^{2}}-4 \frac{1}{\omega_{0}^{2}}}}{2}
$$

Intuition for Resonance/Instability

Dependence on Q-factor (1/2)

Dependence on Q-factor (2/2)

Content

High Frequency Small Signal Model of MOSFETs (book 9.2)

High Frequency Response of CS and CE Amplifiers (book 9.3)

Toolset for Frequency Analysis and Complete CS Analysis (9.4)

CG and Cascode HF response (Book 9.5)

Source follower HF response (Book 9.6)

Differential Amp HF Analysis (book 9.7)

HF Analysis of Current-Mirror-Loaded CMOS Amp (1/2)

Neglecting r_{o} in current mirror:

(a)

$$
\begin{aligned}
G_{M} & =g_{m} \frac{1+s \frac{c_{m}}{2 g_{3}}}{1+s_{c_{m}}} \frac{c_{m 3}}{g_{2}} \\
\omega_{p 2} & =\frac{g_{m 3}}{C_{m}} \\
\omega_{z} & =\frac{2 g_{m}}{C_{m}}
\end{aligned}
$$

HF Analysis of Current-Mirror-Loaded CMOS Amp (2/2)

