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Filterdesign
1. Spesifikasjon

* Kjenne anvendelsen
» Kjenne designmetoder (hva som er mulig, FIR/IIR)

2. Approksimasjon
 Fokus her

3. Analyse
» Filtre er som regel spesifisert i frekvensdomenet
« Ogsa analysere i tid (fase, forsinkelse, ...)

4. Realisering
« DSP, FPGA, PC: Matlab, C, Java ...
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Sources

* The slides about Digital Filter Specifications
have been adapted from slides by S. Mitra,
2001

« Butterworth, Chebychev, etc filters are based
on Wikipedia

* Builds on Oppenheim & Schafer with Buck:
Discrete-Time Signal Processing, 1999.
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IR kontra FIR

« |IR filtre er mer effektive enn FIR — faerre
koeffisienter for samme magnitude-
spesifikasjon

 Men bare FIR kan gi eksakt linezer fase

— Lineeer fase <& symmetrisk h[n]
= Nullpunkter symmetrisk om |z|=1

— Lineaer fase IIR? = Poler utenfor enhetssirkelen
= ustabilt

« |IR kan ogsa bli ustabile pga avrunding i
aritmetikken, det kan ikke FIR
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|deal filters
« Lavpass, hgypass, bandpass, bandstopp
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Prototype low-pass filter

« All filter design methods are specificed for
low-pass only

* |t can be transformed into a high-pass filter

* Or it can be placed in series with others to
form band-pass and band-stop filters
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Digital Filter Specifications

* As the impulse response corresponding to
each of these ideal filters is noncausal and of
infinite length, these filters are not realizable

* In practice, the magnitude response
specifications of a digital filter in the passband
and in the stopband are given with some
acceptable tolerances

 In addition, a transition band is specified
between the passband and stopband

DEPARTMENT OF INFORMATICS




Digital Filter Specifications

« The magnitude response |G(e/*)| of a digital
lowpass filter may be specified as:

|G[£u'im)|

1+5P

- Sps

-— Passband—e: Stopband

Transition

band
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Digital Filter Specifications

* Passband: 0 < o < o,
— We require that |G(e/*)| ~ 1 with an error £5,, i.e.,

1-6,<G(e') <1+6,, w <o,

« Stopband: o, <o <=
— We require that |G(ei®)| =~ 0 with an error g, i.e.,

G('") <5, o <o<r
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Digital Filter Specifications

* o, - passband edge frequency
* o, - stopband edge frequency
* 0, - peak ripple value in the passband
* O, - peak ripple value in the stopband

Properties:
— G(e®) is a periodic function of ®
— |G(el®)| of a real-coefficient digital filter is an even
function of ®
Consequence: Filter specifications are given
only for 0 < |o| <=
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Digital Filter Specifications

« Specifications are often given in terms of loss

function:
G(®)=-20 log,,x|G(el*)| in dB

* Peak passband ripple
(l.p — '20'0910(1'6p) dB

* Minimum stopband attenuation
Otp — '20'0910(63) dB
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Digital Filter Specifications

« Magnitude specifications may alternately be
given in a normalized form as indicated below

e

™

—— Passband—3 Stopband ——

Transition
band
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Normalized frequencies

« Real values

— Real frequencies: f,, f, famoie

— Angular frequencies: o=2xf

« Normalized values

— Angular frequencies: ®=0...2r where f., . < 2n

— Normalized frequencies f=0 ... 2 where 2 is the sampling
frequency (0...1 is the useful range): MATLAB filter
design
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FIR and |IR Digital Filter

« Difference equation

> apln—kl= Y baln—k

 Transfer function

ZM 0 bkz_k < FIR-filtre med bare nullpunkter har ingen analog ekvivalent

ZN 0 a,kz_k < Analoge filter har bare poler < IIR uten FIR-del
— General: lIR - Infinite Impulse Response

— FIR - Finite Impulse Response
» N=0, no feedback, always stable
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Pol- og nullpunktsplassering

» Poler innenfor enhetssirkel < Stabil og kausal

« Poler og nullpunkter i kompleks konjugerte par < Reell
impulsrespons

» Alle nullpunkter finnes speilet om enhetssirkelen < Linezer
fase.

» Viktig! Lineaer fase og reelle koeffisienter < Nullpunkter
finnes i grupper av fire.

» Alle nullpunkter er speilbildet av en pol <> Allpass system

 Alle nullpunkter innenfor enhetssirkel < Minimum fase
system og inversfilter eksisterer

» Alle nullpunkter utenfor enhetssirkel < Kausal maksimum
fase
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Standard Analog Filter functions (magnitude)

Butterworth Chebyshey type 1
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Standard Analog Filter Functions

» Butterworth filter

— no gain ripple in pass band and stop band, slow cutoff

» Chebyshev filter (Type I)

— no gain ripple in stop band, moderate cutoff

» Chebyshev filter (Type II)

— no gain ripple in pass band, moderate cutoff

 Elliptic filter

— gainripple in pass and stop band, fast cutoff

» Bessel filter
— no group delay ripple, no gain ripple in both bands, slow gain cutoff

» Linkwitz-Riley filter

— Used for crossover filters for loudspeakers
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Laplace vs z-transform

» Laplace, s=c+jQ:

H(s) = / * h(t)eStdt

— OO

o Z-transform, z=elo:

H(z) = i h[n]z""

n——oo
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Filter Slopes

« Decade: 10 x frequency, e.g. 100 Hz — 1 kHz
IS one decade

« Octave: 2 x frequency (octave=8 for the whlte
piano keys), e.g. 100 Hz -> 200 Hz

— 1. order filter: rolls off at =6 dB per octave (-20 dB per o
decade) ‘

— 2. order filter: the response decreases at =12 dB per
octave (-40 dB per decade)

— 3. order at —18 dB, and so on.
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Group Delay

* The group delay is the derivative of the phase
with respect to angular frequency

* |t is a measure of the distortion in the signal

introduced by phase differences for different
frequencies.

1, = -d[arg(H(e*))] / do
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Butterworth Filter

« Maximally flat (has no ripples) in the passband, and
rolls off towards zero in the stopband.

 When viewed on a logarithmic plot, the response
slopes off linearly towards negative infinity.

 Butterworth filters have a monotonically changing
magnitude function with w.

 First described by British engineer Stephen
Butterworth in "On the Theory of Filter Amplifiers”,
Wireless Engineer, vol. 7, 1930, pp. 536-541.
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== (Gain
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Plot of the gain of Butterworth low-pass filters of orders 1 through 5.
Note that the slope is 20n dB/decade where n is the filter order.
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3. order passive low pass
filter (Cauer topology).

L. wt 2. 0rder active filter

Y.

L1

(Sallen-Key topology)
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Butterworth

° Frequency response:

1

w 2n’8
1+ (w_o)

G*(w) = |H(jw)|* = =0 + jw

 Transfer function
1

Bn(s)

H(s) =

« Butterworth polynominals (n even, n odd)

Tl = J'J.—j.
Z 2k —1 2 2k —1
B,(s) = H [SE — 25 cos( |2ﬂ ?T) | 1} Ba(s) = (s+ 1) H [52 — 25c0s ( lgﬂ
n

k=1 =1 n
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Butterworth

n | Factors of Polynomial B (S)

1 [(s+1)

2 |s?+1.4142s + 1

3 [(s+1)(s?2+s+1)

4 |(s?+0.7654s + 1)(s? + 1.8478s + 1)

5 |(s+1)(s?+0.6180s + 1)(s? + 1.6180s + 1)
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Butterworth Filter

* N’th order filter: all derivatives of the gain up
to and including the 2N-1'th derivative are
zero at ©=0, resulting in "maximal flatness".

* In decibels, the high-frequency roll-off is 20n
dB/decade, or 6n dB/octave (not only
Butterworth — all filters)
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Chebyshev filter

* Norsk: Tsjebysjeff

« Steeper roll-off and more passband ripple (type I) or
stopband ripple (type Il) than Butterworth filters.

« Minimize the error between the idealized filter
characteristic and the actual, but with ripples in the
passband.

« Named after Pafnuty Chebyshev (1821-1894)

[MadpHyTMin JlIeBOBNY YebbilweB, because they are
defined in terms of Chebyshev polynomials.
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The frequency response of a
fourth-order type | Chebyshev
low-pass filter with € = 1

The frequency response of a
fifth-order type Il Chebyshev
low-pass filter with € = 0.01
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There are
ripples in the
gain and the
group delay in
the passband
but not in the
stop band.
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There are
ripples in the
gain in the stop
band but not in
the pass band.
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Chebyshev

* Frequency response (type I, type Il)

1 1

Gn(w) = |Hp(Jw)| =
) = Gl = e oy \/1+2T2(w>

* ¢ is the ripple factor, w, is the cutoff frequency
and T, () is a nth order Chebyshev polynomial.

Tn(x) = cos(ncos™ 1 z)
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Elliptic Filters

 An elliptic filter (also known as a Cauer filter)
has equalized ripple (equiripple) behavior in
both the passband and the stopband.

* The amount of ripple in each band is
Independently adjustable.

* No other filter of equal order can have a
faster transition between the passband and

the stopband, for the given values of ripple
(whether the ripple is equalized or not).

DEPARTMENT OF INFORMATICS
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Cauer

« Wilhelm Cauer (June 24, 1900 — April 22, 1945) was a
German mathematician and scientist.

* He is most noted for his work on the analysis and
synthesis of electronic filters and his work marked the
beginning of the field of network synthesis.

 Perior to his work, electronic filter design was an art,
requiring specialized knowledge and intuition. Cauer
placed the field on a firm mathematical footing,
providing a theoretical basis for the rational design of
electronic filters.
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4. Order Elliptic Filter

: /—\A
0.8} ‘\ |
G= .
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- » The frequency

response of a fourth-
order elliptic low-
pass filter with €=0.5
and ¢=1.05.

Also shown are the
minimum gain in the
passband and the
maximum gain in the
stopband, and the
transition region
between normalized
frequency 1 and ¢
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* A closeup of the
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Elliptic filter

 Frequency response:

1
J1+eERa(E D)

Gn(w) = [Hn(jw)| =

« where R () is the nth-order Jacobian elliptic
rational function and w, is the cutoff
frequency, ¢ is the ripple factor, € is the
selectivity factor
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Bessel Filter

» A Bessel filter is a filter with a maximally flat
group delay (= linear phase response).

« Analog Bessel filters are characterized by
almost constant group delay across the entire
passband.

* The filter that best preserves the wave shape
of filtered signals in the passband.

 Named after Friedrich Bessel (1784—-1846) as
the filter polynomial is expressed with Bessel
functions
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4. Order Bessel Filter

08

06 == (Gain

== Delay

04+

02
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A plot of the gain and
group delay for a fourth-
order low pass Bessel filter.

Note that the transition
from the pass band to the
stop band is much slower
than for other filters, but the
group delay is practically
constant in the passband.

The Bessel filter maximizes
the flatness of the group
delay curve at zero
frequency.
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Bessel filter

 Transfer function

» where 0,(s) is a reverse Bessel polynomial,
wy is the cut-off frequency

« No Matlab function
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Comparison

« Butterworth: maximally flat amplitude response
« Bessel: maximally flat group delay

« Compared with a Chebyshev Type I/Type Il filter or an
elliptic filter, the Butterworth filter has a slower roll-off,
and thus will require a higher order to implement a
particular stopband specitication.

« However, Butterworth filter will have a more linear
[.I>_hase response in the Pas_sband than the Chebyshev
ype I/Type Il and elliptic filters.

» Chebyshev filters are sharper than the Butterworth
filter; they are not as sharp as the elliptic one, but they
show fewer ripples over the bandwidth.

« Elliptic filters are sharper than all other filters, but they
show ripples on the whole bandwidth.
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IR filters
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Transform analog prototype to
digital domain

 s-plane to z-domain: s=c+jQ2 & z=el®
* Frequency axis: s=jQ2 maps to |z|=1

« Stability, causality maintained

« O=0 < =0 always: LP < LP

Z Plane S Plane

T
NPT

http://en.wikibooks.org/wiki/Digital_Signal_Processing/Bilinear _Transform
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Transform from s-plane to z-plane

1. Impulse invariance
* Impulse response is a sampled version of the analog one
« Aliasing as Q=Q_ < o=nr
« We are not fond of dealing with aliasing, avoid it if we can

2. Bilinear transform
 Let Q=00 be mapped to ==
* Nonlinear transform to go from H(s) to H(z)
21—z1
S —
Tyl + 21
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IR Design: Transform mellom
analog og digital

« Rett fram: sampling av impulsresponsen, h(t)
til h[n] <> Impulsinvarians-metoden

« Konsekvens: aliasing for alle deler av
frekvensresponsen som er over F=S/2

DEPARTMENT OF INFORMATICS
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Impulsinvarians
» S=1/ty = hy[n]=t; h(nt;) =

. i k2
H(e®) = 3 Ha(j%+i—)

k=—00

« Hvis H, er bandbegrenset, sa Ha(jw)=0 for
|w|>7/T:

H(e*) = Ha(j7)
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Impulsinvarians

° Z:eSt —_ eO'tS eJQtS

J

s-plane The s-plane origin is mapped to z = 1.
s g 0.2
Segments of the j@-axis of length @,

o are mapped to the unit circle.

t Imz]

s zplane
\ Relz]

Strips of width @, in the LHP are mapped
- ,/2 to the interior of the unit circle

J

Ail circle

FIGURE 9.2 Characteristics of the mapping z = exp(st;). Each strip of width «; in the
left half of the s-plane is mapped to the interior of the unit circle in the z-plane. Each

segment of the jw-axis in the s-plane of length w; maps to the unit
Clearly, the mapping is not unique

* Frekvensaksen s=jQ transformeres til |z|=1
« Stabilitet, kausalitet beholdes
¢« 0O=0 < »=0alltid: LP & LP

 Aliasing for alle frekvenser over S/2
DEPARTMENT OF INFORMATICS
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Bedre: Bilineaer transform (kap 9.6)

La Q= 0 bli transformert til ®=0
La Q=00 bli transformert til o=x

Ikke-lineaer transform fra H(s) til H(z):
21— z1
S —
Td 1 —|— Z_l
« Sjekk verdier for z=1, -1, £ j
Ekvivalent transform mellom frekvenser:
2
2 = —tan 2
T (w/2)

d
— Vises ved a sette inn z=elw
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Bilineaer transform

* Ingen aliasing, beholder stabilitet og
kausalitet, men forvrenger frekvensaksen:

s=(1-[U2)V(1 + [1/2)) . = arctan(mia)/ma

________________ F_I:_______"_'
2
Q = —tan(w/2)
1y _
t Tha fraquancy warpin q squashas the eatrams fraquancas
rexel 53 that thay cont wrap around the aords
E) BORES Saned Frovesmsg

 Best for lavpass, minst endring av passband
— Forsma w: Q ~ w/T

» Derfor designes farst propotyp lavpassfiltre
— For HP, BP etc: Start med analog LP => digital LP =>
digital HP etc
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Matlab |IR Digital Filter Design

* Order Estimation

« For lIR filter design using bilinear transformation,
MATLAB statements to determine the order and
bandedge are:

[ Wn] = buttord(Wp, Ws, Rp, Rs);
[N, Wn] = cheblord(Wp, Ws, Rp, Rs)
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);
[N, Wn] = ellipord(Wp, Ws, Rp, Rs)

=
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Matlab |IR Digital Filter Design

 Filter Design

« For lIR filter design using bilinear transformation,
MATLAB statements to use are:

[b, al] = butter (Nb, Wn)

[b, al] = chebyl(Nc, Rp, Wn)

[b, al] = cheby2 (Nc, Rs, Wn)

[b, a] = ellip(Ne, Rp, Rs, Wn)
« No need to think about bilinear transform

« Transfer function can be computed using fregz(b, a, w)
where w is a set of angular frequencies

DEPARTMENT OF INFORMATICS

60




Matlab |IR Digital Filter Design

* Design an elliptic IIR lowpass filter with
F,=0.8 kHz, F=1kHz, F,,,,.=4 kHz, o, = 0.5
dB, a.=40 dB

« Code fragments used are:
[N,Wn] = ellipord(0.8/(4/2), 1/(4/2), 0.5, 40);

— Result: N=5. order, W_=0.4
(compare with N,=18, N_=8)

[b, a] = ellip(N, 0.5, 40, Wn);

* Full example: IIRdesign.m
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Matlab |IR Digital Filter Design

Elliptic IR Lowpass Filter Passband Details

0.3 0.4
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9.8 Effekter av endelig ordlengde

« Koeffisienter blir avkortet
— Som regel blir det en liten endring av frekvensrespons
— Katastrofal feil: en pol innenfor |z|=1 kan havne utenfor (bare
lIR)

» Aritmetikken foregar med endelig presisjon
— Filteret blir et ikke-lineaert system
— Kvantiseringsst@gy og avrundingsstay
— Feil pga overstyring

~rvunrlac: Neerillacinnar NnA
UyUIUO. VOUIIIGOJUIIUI pa u

t
— Bare i lIR da det trenger tllbakekobllng
— Fullskala oscillasjoner hvis overstyring folder rundt
(X>Xmax = —Xmax) | Stedet for metning (X>X .. = Ximax)
— Sma oscillasjoner hvis avrunding istedet for avkorting
— http://cnx.org/content/m11928/latest/

I |'|'no naen |i'
L ut
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