

IIR filterdesign

Sverre Holm
INF3470
Digital signalbehandling

Filterdesign

1. Spesifikasjon

- Kjenne anvendelsen
- Kjenne designmetoder (hva som er mulig, FIR/IIR)

2. Approksimasjon

Fokus her

3. Analyse

- Filtre er som regel spesifisert i frekvensdomenet
- Også analysere i tid (fase, forsinkelse, ...)

4. Realisering

DSP, FPGA, PC: Matlab, C, Java ...

Sources

- The slides about Digital Filter Specifications have been adapted from slides by S. Mitra, 2001
- Butterworth, Chebychev, etc filters are based on Wikipedia
- Builds on Oppenheim & Schafer with Buck: Discrete-Time Signal Processing, 1999.

IIR kontra FIR

- IIR filtre er mer effektive enn FIR færre koeffisienter for samme magnitudespesifikasjon
- Men bare FIR kan gi eksakt lineær fase
 - Lineær fase ⇔ symmetrisk h[n]
 ⇒ Nullpunkter symmetrisk om |z|=1
 - Lineær fase IIR? ⇒ Poler utenfor enhetssirkelen
 ⇒ ustabilt
- IIR kan også bli ustabile pga avrunding i aritmetikken, det kan ikke FIR

Ideal filters

• Lavpass, høypass, båndpass, båndstopp

Prototype low-pass filter

- All filter design methods are specificed for low-pass only
- It can be transformed into a high-pass filter
- Or it can be placed in series with others to form band-pass and band-stop filters

- As the impulse response corresponding to each of these ideal filters is noncausal and of infinite length, these filters are not realizable
- In practice, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances
- In addition, a transition band is specified between the passband and stopband

 The magnitude response |G(e^{jω})| of a digital lowpass filter may be specified as:

- Passband: $0 \le \omega \le \omega_p$
 - We require that $|G(e^{j\omega})|\approx 1$ with an error $\pm \delta_p$, i.e.,

$$1 - \delta_p \le |G(e^{j\omega})| \le 1 + \delta_p, \quad |\omega| \le \omega_p$$

- Stopband: $\omega_s \le \omega \le \pi$
 - We require that $|G(e^{j\omega})| \approx 0$ with an error δ_s , i.e.,

$$|G(e^{j\omega})| \leq \delta_s, \quad \omega_s \leq |\omega| \leq \pi$$

- ω_p passband edge frequency
- ω_s stopband edge frequency
- δ_p peak ripple value in the passband
- δ_s peak ripple value in the stopband
- Properties:
 - $G(e^{j\omega})$ is a periodic function of ω
 - $|G(e^{j\omega})|$ of a real-coefficient digital filter is an even function of ω
- Consequence: Filter specifications are given only for $0 \le |\omega| \le \pi$

Specifications are often given in terms of loss function:

$$G(\omega)$$
=-20 $log_{10}|G(e^{j\omega)}|$ in dB

- Peak passband ripple $\alpha_p = -20\log_{10}(1-\delta_p) \text{ dB}$
- Minimum stopband attenuation $\alpha_p = -20log_{10}(\delta_s) dB$

 Magnitude specifications may alternately be given in a normalized form as indicated below

Normalized frequencies

- Real values
 - Real frequencies: f_p, f_s, f_{sample}
 - Angular frequencies: $\omega = 2\pi f$
- Normalized values
 - Angular frequencies: ω =0...2 π where f_{sample} \Leftrightarrow 2 π
 - Normalized frequencies f=0 ... 2 where 2 is the sampling frequency (0...1 is the useful range): MATLAB filter design

FIR and IIR Digital Filter

Difference equation

$$\sum_{k=0}^{k=N} a_k y[n-k] = \sum_{k=0}^{k=M} b_k x[n-k]$$

Transfer function

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \qquad \begin{array}{l} \leftarrow \text{FIR-filtre med bare null punkter har ingen analog ekvivalent} \\ \leftarrow \text{Analoge filter har bare poler} \Leftrightarrow \text{IIR uten FIR-del} \end{array}$$

- General: IIR Infinite Impulse Response
- FIR Finite Impulse Response
 - » N=0, no feedback, always stable

Pol- og nullpunktsplassering

- Poler innenfor enhetssirkel ⇔ Stabil og kausal
- Poler og nullpunkter i kompleks konjugerte par ⇔ Reell impulsrespons
- Alle nullpunkter finnes speilet om enhetssirkelen
 ⇔ Lineær fase.
- Alle nullpunkter er speilbildet av en pol ⇔ Allpass system
- Alle nullpunkter utenfor enhetssirkel

 Kausal maksimum fase

Standard Analog Filter functions (magnitude)

Standard Analog Filter Functions

- Butterworth filter
 - no gain ripple in pass band and stop band, slow cutoff
- Chebyshev filter (Type I)
 - no gain ripple in stop band, moderate cutoff
- Chebyshev filter (Type II)
 - no gain ripple in pass band, moderate cutoff
- Elliptic filter
 - gain ripple in pass and stop band, fast cutoff
- Bessel filter
 - no group delay ripple, no gain ripple in both bands, slow gain cutoff
- Linkwitz-Riley filter
 - Used for crossover filters for loudspeakers

Laplace vs z-transform

• Laplace, $s=\sigma+j\Omega$:

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

Z-transform, z=e^{jω}:

$$H(z) = \sum_{n = -\infty}^{\infty} h[n]z^{-n}$$

Avbildning mellom s- og z-plan ved bilineær transform

Filter Slopes

- Decade: 10 x frequency, e.g. 100 Hz 1 kHz is one decade
- Octave: 2 x frequency (octave=8 for the white piano keys), e.g. 100 Hz -> 200 Hz
 - 1. order filter: rolls off at −6 dB per octave (−20 dB per decade)
 - 2. order filter: the response decreases at −12 dB per octave (-40 dB per decade)
 - 3. order at −18 dB, and so on.

Group Delay

- The group delay is the derivative of the phase with respect to angular frequency
- It is a measure of the distortion in the signal introduced by phase differences for different frequencies.

$$\tau_g = -d[arg(H(e^{j\omega}))] / d\omega$$

Butterworth Filter

- Maximally flat (has no ripples) in the passband, and rolls off towards zero in the stopband.
- When viewed on a logarithmic plot, the response slopes off linearly towards negative infinity.
- Butterworth filters have a monotonically changing magnitude function with ω .
- First described by British engineer Stephen Butterworth in "On the Theory of Filter Amplifiers", Wireless Engineer, vol. 7, 1930, pp. 536-541.

3. Order Butterworth with ω_p =1

Plot of the gain of Butterworth low-pass filters of orders 1 through 5. Note that the slope is 20n dB/decade where n is the filter order.

Analog Butterworth

3. order passive low pass filter (Cauer topology).

2. order active filter(Sallen-Key topology)

Butterworth

• Frequency response:

$$G^{2}(\omega) = |H(j\omega)|^{2} = \frac{1}{1 + (\frac{\omega}{\omega_{0}})^{2n}}, s = \sigma + j\omega$$

Transfer function

$$H(s) = \frac{1}{B_n(s)}$$

• Butterworth polynominals (n even, n odd)

$$B_n(s) = \prod_{k=1}^{\frac{n}{2}} \left[s^2 - 2s \cos \left(\frac{2k+n-1}{2n} \pi \right) + 1 \right] \quad B_n(s) = (s+1) \prod_{k=1}^{\frac{n-1}{2}} \left[s^2 - 2s \cos \left(\frac{2k+n-1}{2n} \pi \right) + 1 \right]$$

Butterworth

n	Factors of Polynomial B _n (s)
1	(s + 1)
2	s ² + 1.4142s + 1
3	$(s + 1)(s^2 + s + 1)$
4	$(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)$
5	$(s + 1)(s^2 + 0.6180s + 1)(s^2 + 1.6180s + 1)$

Butterworth Filter

- N'th order filter: all derivatives of the gain up to and including the 2N-1'th derivative are zero at ω=0, resulting in "maximal flatness".
- In decibels, the high-frequency roll-off is 20n dB/decade, or 6n dB/octave (not only Butterworth all filters)

Chebyshev filter

- Norsk: Tsjebysjeff
- Steeper roll-off and more passband ripple (type I) or stopband ripple (type II) than Butterworth filters.
- Minimize the error between the idealized filter characteristic and the actual, but with ripples in the passband.
- Named after Pafnuty Chebyshev (1821-1894)
 Пафнутий Льво́вич Чебышёв, because they are defined in terms of Chebyshev polynomials.

Chebyshev type I and type II

 The frequency response of a fourth-order type I Chebyshev low-pass filter with ε = 1

 The frequency response of a fifth-order type II Chebyshev low-pass filter with ε = 0.01

5. Order Chebyshev type I (ε=0.5)

There are ripples in the gain and the group delay in the passband but not in the stop band.

5. Order Chebyshev type II (ε=0.1)

There are ripples in the gain in the stop band but not in the pass band.

Chebyshev

Frequency response (type I, type II)

$$G_n(\omega) = |H_n(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 T_n^2(\frac{\omega}{\omega_0})}}, or \frac{1}{\sqrt{1 + \frac{1}{\epsilon^2 T_n^2(\frac{\omega}{\omega_0})}}}$$

• ϵ is the ripple factor, ω_0 is the cutoff frequency and $T_n()$ is a nth order Chebyshev polynomial.

$$T_n(x) = \cos(n\cos^{-1}x)$$

Elliptic Filters

- An elliptic filter (also known as a Cauer filter)
 has equalized ripple (equiripple) behavior in
 both the passband and the stopband.
- The amount of ripple in each band is independently adjustable.
- No other filter of equal order can have a faster transition between the passband and the stopband, for the given values of ripple (whether the ripple is equalized or not).

Cauer

- Wilhelm Cauer (June 24, 1900 April 22, 1945) was a German mathematician and scientist.
- He is most noted for his work on the analysis and synthesis of electronic filters and his work marked the beginning of the field of network synthesis.
- Prior to his work, electronic filter design was an art, requiring specialized knowledge and intuition. Cauer placed the field on a firm mathematical footing, providing a theoretical basis for the rational design of electronic filters.

4. Order Elliptic Filter

- The frequency response of a fourthorder elliptic lowpass filter with ε=0.5 and ξ=1.05.
- Also shown are the minimum gain in the passband and the maximum gain in the stopband, and the transition region between normalized frequency 1 and ξ

4. Order Elliptic Filter

 A closeup of the transition region of the previous plot

Elliptic filter

Frequency response:

$$G_n(\omega) = |H_n(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 R_n^2(\xi, \frac{\omega}{\omega_0})}}$$

• where $R_n()$ is the nth-order Jacobian elliptic rational function and ω_0 is the cutoff frequency, ϵ is the ripple factor, ξ is the selectivity factor

Bessel Filter

- A Bessel filter is a filter with a maximally flat group delay (\approx linear phase response).
- Analog Bessel filters are characterized by almost constant group delay across the entire passband.
- The filter that best preserves the wave shape of filtered signals in the passband.
- Named after Friedrich Bessel (1784–1846) as the filter polynomial is expressed with Bessel functions

4. Order Bessel Filter

- A plot of the gain and group delay for a fourthorder low pass Bessel filter.
- Note that the transition from the pass band to the stop band is much slower than for other filters, but the group delay is practically constant in the passband.
- The Bessel filter maximizes the flatness of the group delay curve at zero frequency.

Bessel filter

Transfer function

$$H(s) = \frac{\theta_n(0)}{\theta_n(s/\omega_0)}$$

• where $\theta_n(s)$ is a reverse Bessel polynomial, ω_0 is the cut-off frequency

No Matlab function

Comparison

- Butterworth: maximally flat amplitude response
- Bessel: maximally flat group delay
- Compared with a Chebyshev Type I/Type II filter or an elliptic filter, the Butterworth filter has a slower roll-off, and thus will require a higher order to implement a particular stopband specification.
- However, Butterworth filter will have a more linear phase response in the passband than the Chebyshev Type I/Type II and elliptic filters.
- Chebyshev filters are sharper than the Butterworth filter; they are not as sharp as the elliptic one, but they show fewer ripples over the bandwidth.
- Elliptic filters are sharper than all other filters, but they show ripples on the whole bandwidth.

IIR filters

Transform analog prototype to digital domain

- s-plane to z-domain: $s=\sigma+j\Omega \Leftrightarrow z=e^{j\omega}$
- Frequency axis: s=jΩ maps to |z|=1
- Stability, causality maintained
- Ω =0 \Leftrightarrow ω =0 always: LP \Leftrightarrow LP z Plane s Plane

http://en.wikibooks.org/wiki/Digital_Signal_Processing/Bilinear_Transform

Transform from s-plane to z-plane

1. Impulse invariance

- Impulse response is a sampled version of the analog one
- Aliasing as $\Omega = \Omega_s \Leftrightarrow \omega = \pi$
- We are not fond of dealing with aliasing, avoid it if we can

2. Bilinear transform

- Let $\Omega = \infty$ be mapped to $\omega = \pi$
- Nonlinear transform to go from H(s) to H(z)

$$s = \frac{2}{T_d} \frac{1 - z^{-1}}{1 + z^{-1}}$$

IIR Design: Transform mellom analog og digital

- Rett fram: sampling av impulsresponsen, h(t) til h_s[n] ⇔ Impulsinvarians-metoden
- Konsekvens: aliasing for alle deler av frekvensresponsen som er over F=S/2

Impulsinvarians

• S=1/ $t_s \Rightarrow h_s[n]=t_s h(nt_s) \Rightarrow$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_a(j\frac{\omega}{T} + j\frac{k2\pi}{T})$$

• Hvis H_a er båndbegrenset, så Ha(j ω)=0 for $|\omega| > \pi/T$:

$$H(e^{j\omega}) = H_a(j\frac{\omega}{T})$$

Impulsinvarians

• $z=e^{st}=e^{\sigma t_s}e^{j\Omega t_s}$

FIGURE 9.2 Characteristics of the mapping $z \Rightarrow \exp(st_s)$. Each strip of width ω_s in the left half of the s-plane is mapped to the interior of the unit circle in the z-plane. Each segment of the $j\omega$ -axis in the s-plane of length ω_s maps to the unit circle itself. Clearly, the mapping is not unique

- Frekvensaksen s=jΩ transformeres til |z|=1
- Stabilitet, kausalitet beholdes
- Ω =0 \Leftrightarrow ω =0 alltid: LP \Leftrightarrow LP
- Aliasing for alle frekvenser over S/2

Bedre: Bilineær transform (kap 9.6)

- La Ω = 0 bli transformert til ω =0
- La $\Omega = \infty$ bli transformert til $\omega = \pi$
- Ikke-lineær transform fra H(s) til H(z):

$$s = \frac{2}{T_d} \frac{1 - z^{-1}}{1 + z^{-1}}$$

- Sjekk verdier for z=1, -1, \pm j
- Ekvivalent transform mellom frekvenser:

$$\Omega = \frac{2}{T_d} \tan(\omega/2)$$

Vises ved å sette inn z=ejω

Bilineær transform

 Ingen aliasing, beholder stabilitet og kausalitet, men forvrenger frekvensaksen:

$$\Omega = \frac{2}{T_d} \tan(\omega/2)$$

- Best for lavpass, minst endring av passbånd
 - For små ω : $\Omega \approx \omega/T_d$
- Derfor designes først propotyp lavpassfiltre
 - For HP, BP etc: Start med analog LP => digital LP => digital HP etc

- Order Estimation
- For IIR filter design using bilinear transformation, MATLAB statements to determine the order and bandedge are:

```
[N, Wn] = buttord(Wp, Ws, Rp, Rs);
[N, Wn] = cheblord(Wp, Ws, Rp, Rs);
[N, Wn] = cheblord(Wp, Ws, Rp, Rs);
[N, Wn] = ellipord(Wp, Ws, Rp, Rs);
```


- Filter Design
- For IIR filter design using bilinear transformation, MATLAB statements to use are:

```
[b, a] = butter(Nb, Wn)
[b, a] = cheby1(Nc, Rp, Wn)
[b, a] = cheby2(Nc, Rs, Wn)
[b, a] = ellip(Ne, Rp, Rs, Wn)
```

- No need to think about bilinear transform
- Transfer function can be computed using freqz(b, a, w)
 where w is a set of angular frequencies

- Design an elliptic IIR lowpass filter with F = 0.8 kHz, F = 1 kHz, F = 4 kHz, α_p = 0.5 dB, α_s = 40 dB
- Code fragments used are:

```
[N,Wn] = ellipord(0.8/(4/2), 1/(4/2), 0.5, 40);

-Result: N=5. order, W_n=0.4

(compare with N_b=18, N_c=8)

[b, a] = ellip(N, 0.5, 40, Wn);
```

• Full example: IIRdesign.m

9.8 Effekter av endelig ordlengde

- Koeffisienter blir avkortet
 - Som regel blir det en liten endring av frekvensrespons
 - Katastrofal feil: en pol innenfor |z|=1 kan havne utenfor (bare IIR)
- Aritmetikken foregår med endelig presisjon
 - Filteret blir et ikke-lineært system
 - Kvantiseringsstøy og avrundingsstøy
 - Feil pga overstyring
- Limit cycles: Oscillasjoner på utgangen uten inngang
 - Bare i IIR da det trenger tilbakekobling
 - Fullskala oscillasjoner hvis overstyring folder rundt ($x>x_{max} \Rightarrow -x_{max}$) i stedet for metning ($x>x_{max} \Rightarrow x_{max}$)
 - Små oscillasjoner hvis avrunding istedet for avkorting
 - http://cnx.org/content/m11928/latest/