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FilterdesignFilterdesign
1. Spesifikasjon

Kj d l• Kjenne anvendelsen
• Kjenne designmetoder (hva som er mulig, FIR/IIR)

2. Approksimasjonpp j
• Fokus her

3. Analyse
Filt l ifi t i f k d t• Filtre er som regel spesifisert i frekvensdomenet

• Også analysere i tid (fase, forsinkelse, ...)

4. Realiseringg
• DSP, FPGA, PC: Matlab, C, Java ...

DEPARTMENT OF INFORMATICS 2



UNIVERSITY 
OF OSLO

SourcesSourcesSourcesSources
• The slides about Digital Filter Specifications

h b d t d f lid b S Mithave been adapted from slides by S. Mitra, 
2001

• Butterworth Chebychev etc filters are based• Butterworth, Chebychev, etc filters are based 
on Wikipedia

• Builds on Oppenheim & Schafer with Buck:Builds on Oppenheim & Schafer with Buck: 
Discrete-Time Signal Processing, 1999.
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IIR kontra FIRIIR kontra FIR
• IIR filtre er mer effektive enn FIR – færre 

k ffi i t f it dkoeffisienter for samme magnitude-
spesifikasjon

• Men bare FIR kan gi eksakt lineær fase• Men bare FIR kan gi eksakt lineær fase
– Lineær fase  symmetrisk h[n]

⇒ Nullpunkter symmetrisk om |z|=1
– Lineær fase IIR? ⇒ Poler utenfor enhetssirkelenLineær fase IIR? ⇒ Poler utenfor enhetssirkelen 

⇒ ustabilt

• IIR kan også bli ustabile pga avrunding i 
it tikk d t k ikk FIRaritmetikken, det kan ikke FIR
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Ideal filtersIdeal filtersIdeal filtersIdeal filters
• Lavpass, høypass, båndpass, båndstopp

HLP(e j) HHP(e j)
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Prototype low-pass filterPrototype low pass filter
• All filter design methods are specificed for 

l llow-pass only
• It can be transformed into a high-pass filter

O i b l d i i i h h• Or it can be placed in series with others to 
form band-pass and band-stop filters

DEPARTMENT OF INFORMATICS 6



UNIVERSITY 
OF OSLO

Digital Filter SpecificationsDigital Filter SpecificationsDigital Filter SpecificationsDigital Filter Specifications
• As the impulse response corresponding to 

h f th id l filt i l d feach of these ideal filters is noncausal and of 
infinite length, these filters are not realizable

• In practice the magnitude response• In practice, the magnitude response 
specifications of a digital filter in the passband 
and in the stopband are given with some 
acceptable tolerances

• In addition, a transition band is specified 
between the passband and stopbandbetween the passband and stopband
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Digital Filter SpecificationsDigital Filter SpecificationsDigital Filter SpecificationsDigital Filter Specifications
• The magnitude response |G(ej)| of a digital 

l filt b ifi dlowpass filter may be specified as:
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Digital Filter SpecificationsDigital Filter SpecificationsDigital Filter SpecificationsDigital Filter Specifications
• Passband: 0 ≤  ≤ p

– We require that |G(ej)| ≈ 1 with an error ±p, i.e.,

pp
j

p eG    ,1)(1
• Stopband: s ≤  ≤ 

W i th t |G( j)| 0 ith  i

ppp ,)(

– We require that |G(ej)| ≈ 0 with an error s, i.e.,     

 jeG ,)(   sseG ,)(
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Digital Filter SpecificationsDigital Filter SpecificationsDigital Filter SpecificationsDigital Filter Specifications
• p - passband edge frequency
• s - stopband edge frequency
• p - peak ripple value in the passbandp

• s - peak ripple value in the stopband
• Properties:

– G(ej) is a periodic function of 
– |G(ej)| of a real-coefficient digital filter is an even 

function of 

• Consequence: Filter specifications are given 
only for 0 ≤ || ≤ 
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Digital Filter SpecificationsDigital Filter SpecificationsDigital Filter SpecificationsDigital Filter Specifications
• Specifications are often given in terms of loss 

f tifunction: 
G()=-20 log10|G(ej)| in dB

• Peak passband ripple
p = -20log10(1-p) dBp  20log10(1 p) dB

• Minimum stopband attenuationMinimum stopband attenuation 
p = -20log10(s) dB
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Digital Filter SpecificationsDigital Filter SpecificationsDigital Filter SpecificationsDigital Filter Specifications
• Magnitude specifications may alternately be 

i i li d f i di t d b lgiven in a normalized form as indicated below
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Normalized frequenciesNormalized frequencies
• Real values

– Real frequencies: fp, fs, fsample

– Angular frequencies: =2f

• Normalized values• Normalized values
– Angular frequencies: =0...2 where fsample  2
– Normalized frequencies f=0 ... 2 where 2 is the sampling 

frequency (0...1 is the useful range): MATLAB filter 
design
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FIR and IIR Digital FilterFIR and IIR Digital FilterFIR and IIR Digital FilterFIR and IIR Digital Filter
• Difference equation

Transfer function• Transfer function

← FIR-filtre med bare nullpunkter har ingen analog ekvivalent

– General: IIR - Infinite Impulse Response
FIR Fi it I l R

←Analoge filter har bare poler  IIR uten FIR-del

– FIR - Finite Impulse Response
» N=0, no feedback, always stable
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Pol- og nullpunktsplasseringPol og nullpunktsplassering
• Poler innenfor enhetssirkel  Stabil og kausal
• Poler og nullpunkter i kompleks konjugerte par Reell• Poler og nullpunkter i kompleks konjugerte par  Reell 

impulsrespons
• Alle nullpunkter finnes speilet om enhetssirkelen Lineær 

fase. 
• Viktig! Lineær fase og reelle koeffisienter  Nullpunkter 

finnes i grupper av fire.

• Alle nullpunkter er speilbildet av en pol  Allpass system
• Alle nullpunkter innenfor enhetssirkel  Minimum fase 

system og inversfilter eksisterer
• Alle nullpunkter utenfor enhetssirkel  Kausal maksimum 

fase
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Standard Analog Filter functions (magnitude)
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Standard Analog Filter FunctionsStandard Analog Filter Functions
• Butterworth filter

– no gain ripple in pass band and stop band slow cutoffno gain ripple in pass band and stop band, slow cutoff
• Chebyshev filter (Type I)

– no gain ripple in stop band, moderate cutoff
• Chebyshev filter (Type II)y ( yp )

– no gain ripple in pass band, moderate cutoff
• Elliptic filter

– gain ripple in pass and stop band, fast cutoff

• Bessel filter
– no group delay ripple, no gain ripple in both bands, slow gain cutoff

• Linkwitz-Riley filter
– Used for crossover filters for loudspeakers
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Laplace vs z-transformLaplace vs z transform
• Laplace, s=+j:

• Z-transform, z=ej:

Avbildning mellom s- og z-plan
ved bilineær transform
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Filter SlopesFilter Slopes
• Decade: 10 x frequency, e.g. 100 Hz – 1 kHz 

i d dis one decade
• Octave: 2 x frequency (octave=8 for the white 

piano keys) e g 100 Hz > 200 Hzpiano keys), e.g. 100 Hz -> 200 Hz
– 1. order filter: rolls off at −6 dB per octave (−20 dB per 

decade) 
– 2. order filter: the response decreases at −12 dB per 

octave (-40 dB per decade)
– 3. order at −18 dB, and so on. 
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Group DelayGroup Delay
• The group delay is the derivative of the phase 

ith t t l fwith respect to angular frequency
• It is a measure of the distortion in the signal 

introduced by phase differences for differentintroduced by phase differences for different 
frequencies.

g = -d[arg(H(ej))] / d
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Butterworth FilterButterworth Filter
• Maximally flat (has no ripples) in the passband, and 

rolls off towards zero in the stopbandrolls off towards zero in the stopband. 
• When viewed on a logarithmic plot, the response 

slopes off linearly towards negative infinity. 
• Butterworth filters have a monotonically changing 

magnitude function with ω.
• First described by British engineer StephenFirst described by British engineer Stephen 

Butterworth in "On the Theory of Filter Amplifiers", 
Wireless Engineer, vol. 7, 1930, pp. 536-541.

DEPARTMENT OF INFORMATICS 24



UNIVERSITY 
OF OSLO

3 Order Butterworth with  =13. Order Butterworth with p 1
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Plot of the gain of Butterworth low-pass filters of orders 1 through 5. 
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Analog ButterworthAnalog Butterworth

3. order passive low pass
filter (Cauer topology). ( p gy)

2. order active filter 
(Sallen-Key topology)
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ButterworthButterworth
• Frequency response:

• Transfer function

• Butterworth polynominals (n even, n odd)
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ButterworthButterworth
n Factors of Polynomial Bn(s)

1 (s + 1)

2 s2 + 1 4142s + 12 s + 1.4142s + 1

3 (s + 1)(s2 + s + 1)

4 (s2 + 0.7654s + 1)(s2 + 1.8478s + 1)

5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)( )( )( )
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Butterworth FilterButterworth Filter
• N’th order filter: all derivatives of the gain up 

t d i l di th 2N 1’th d i tito and including the 2N-1’th derivative are 
zero at =0, resulting in "maximal flatness".

• In decibels the high frequency roll off is 20n• In decibels, the high-frequency roll-off is 20n 
dB/decade, or 6n dB/octave (not only 
Butterworth – all filters)
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Chebyshev filterChebyshev filter
• Norsk: Tsjebysjeff
• Steeper roll-off and more passband ripple (type I) or 

stopband ripple (type II) than Butterworth filters. 
• Minimize the error between the idealized filter 

characteristic and the actual, but with ripples in the 
passband.

• Named after Pafnuty Chebyshev (1821-1894)Named after Pafnuty Chebyshev (1821 1894) 
Пафну́тий Льво́вич Чебышёв, because they are 
defined in terms of Chebyshev polynomials.

DEPARTMENT OF INFORMATICS 31



UNIVERSITY 
OF OSLO

Chebyshev type I and type II

• The frequency response of a 
fourth order type I Chebyshevfourth-order type I Chebyshev 
low-pass filter with ε = 1

• The frequency response of a 
fifth-order type II Chebyshev 
l filt ith 0 01low-pass filter with ε = 0.01
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5 Order Chebyshev type I (ε=0 5)5. Order Chebyshev type I (ε 0.5)

• There are 
ripples in the pp
gain and the 
group delay in 
the passband 
but not in the 
stop band.
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5 Order Chebyshev type II (ε=0 1)5. Order Chebyshev type II (ε 0.1)

• There are 
ripples in the 
gain in the stop 
band but not in 
th b dthe pass band.
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ChebyshevChebyshev
• Frequency response (type I, type II)

• ε is the ripple factor, ω0 is the cutoff frequency 
and Tn() is a nth order Chebyshev polynomial.
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Elliptic FiltersElliptic Filters
• An elliptic filter (also known as a Cauer filter) 

h li d i l ( i i l ) b h i ihas equalized ripple (equiripple) behavior in 
both the passband and the stopband. 

• The amount of ripple in each band is• The amount of ripple in each band is 
independently adjustable.

• No other filter of equal order can have aNo other filter of equal order can have a 
faster transition between the passband and 
the stopband, for the given values of ripple 
(whether the ripple is equalized or not)(whether the ripple is equalized or not).

DEPARTMENT OF INFORMATICS 36



UNIVERSITY 
OF OSLO

CauerCauer
• Wilhelm Cauer (June 24, 1900 – April 22, 1945) was a 

German mathematician and scientistGerman mathematician and scientist. 
• He is most noted for his work on the analysis and 

synthesis of electronic filters and his work marked the 
b i i f th fi ld f t k th ibeginning of the field of network synthesis. 

• Prior to his work, electronic filter design was an art, 
requiring specialized knowledge and intuition. Cauer 
placed the field on a firm mathematical footing, 
providing a theoretical basis for the rational design of 
electronic filters.
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4 Order Elliptic Filter4. Order Elliptic Filter
• The frequency 

response of a fourth-response of a fourth
order elliptic low-
pass filter with ε=0.5 
and ξ=1.05. 

• Also shown are the 
minimum gain in the 
passband and the 
maximum gain in themaximum gain in the 
stopband, and the 
transition region 
between normalized 
frequency 1 and ξ
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4 Order Elliptic Filter4. Order Elliptic Filter
• A closeup of the 

transition regiontransition region 
of the previous 
plot
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Elliptic filterElliptic filter
• Frequency response:

• where Rn() is the nth-order Jacobian elliptic 
rational function and ω0 is the cutoff 
frequency, ε is the ripple factor, ξ is the 
selectivity factorselectivity factor
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Bessel FilterBessel Filter
• A Bessel filter is a filter with a maximally flat 

group delay (≈ linear phase response)group delay (≈ linear phase response). 
• Analog Bessel filters are characterized by 

almost constant group delay across the entire g p y
passband.

• The filter that best preserves the wave shape 
of filtered signals in the passbandof filtered signals in the passband. 

• Named after Friedrich Bessel (1784–1846) as 
the filter polynomial is expressed with Bessel 
ffunctions
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4 Order Bessel Filter4. Order Bessel Filter
• A plot of the gain and 

group delay for a fourth-group delay for a fourth
order low pass Bessel filter.

• Note that the transition 
from the pass band to thefrom the pass band to the 
stop band is much slower 
than for other filters, but the 
group delay is practically 

t t i th b dconstant in the passband.
• The Bessel filter maximizes 

the flatness of the group 
delay curve at zerodelay curve at zero 
frequency.
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Bessel filterBessel filter
• Transfer function

• where θn(s) is a reverse Bessel polynomial, 
ω0 is the cut-off frequency

• No Matlab function
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ComparisonComparison
• Butterworth: maximally flat amplitude response
• Bessel: maximally flat group delay• Bessel: maximally flat group delay
• Compared with a Chebyshev Type I/Type II filter or an 

elliptic filter, the Butterworth filter has a slower roll-off, 
and thus will require a higher order to implement a 

ti l t b d ifi tiparticular stopband specification. 
• However, Butterworth filter will have a more linear 

phase response in the passband than the Chebyshev 
Type I/Type II and elliptic filtersType I/Type II and elliptic filters.

• Chebyshev filters are sharper than the Butterworth 
filter; they are not as sharp as the elliptic one, but they 
show fewer ripples over the bandwidth.

• Elliptic filters are sharper than all other filters, but they 
show ripples on the whole bandwidth.
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IIR filtersIIR filters
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Transform analog prototype to 
di it l d idigital domain
• s-plane to z-domain: s=+j z=ej

• Frequency axis: s=j maps to |z|=1
• Stability, causality maintained
• =0  =0 always: LP  LP
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Transform from s-plane to z-planeTransform from s plane to z plane

1 Impulse invariance1. Impulse invariance
• Impulse response is a sampled version of the analog one
• Aliasing as =s  =
• We are not fond of dealing with aliasing, avoid it if we can

2. Bilinear transform
L t  b d t• Let =∞ be mapped to =

• Nonlinear transform to go from H(s) to H(z)
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IIR Design: Transform mellom 
l di it lanalog og digital

• Rett fram: sampling av impulsresponsen, h(t) 
til hs[n]  Impulsinvarians-metoden

• Konsekvens: aliasing for alle deler av 
frekvensresponsen som er over F=S/2frekvensresponsen som er over F=S/2
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ImpulsinvariansImpulsinvarians
• S=1/ts ⇒ hs[n]=ts h(nts) ⇒

H(ejω) =
∞X

k

Ha(j
ω

T
+ j

k2π

T
)

• Hvis Ha er båndbegrenset, så Ha(jω)=0 for 

k=−∞ T T

|ω|>π/T:

H(ejω) = Ha(j
ω
)H(e ) Ha(j

T
)
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ImpulsinvariansImpulsinvarians
• z=est = eσts ejts

• Frekvensaksen s=j transformeres til |z|=1Frekvensaksen s j transformeres til |z| 1
• Stabilitet, kausalitet beholdes
• =0  =0 alltid: LP  LP
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Bedre: Bilineær transform (kap 9 6)Bedre: Bilineær transform (kap 9.6)
• La = bli transformert til =

L bli t f t til• La =∞ bli transformert til =
• Ikke-lineær transform fra H(s) til H(z):

• Sjekk verdier for z=1, -1, ± jj j
• Ekvivalent transform mellom frekvenser:

– Vises ved å sette inn z=ejω
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Bilineær transformBilineær transform
• Ingen aliasing, beholder stabilitet og 

kausalitet men forvrenger frekvensaksen:kausalitet, men forvrenger frekvensaksen:

• Best for lavpass, minst endring av passbånd
– For små ω:  ≈ ω/Td

• Derfor designes først propotyp lavpassfiltre
– For HP, BP etc: Start med analog LP => digital LP => 

digital HP etc
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Matlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter Design
• Order Estimation
• For IIR filter design using bilinear transformation, 

MATLAB statements to determine the order and 
bandedge are:
[N, Wn] = buttord(Wp, Ws, Rp, Rs);

[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs);

[N W ] h b2 d(W W R R )[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);

[N, Wn] = ellipord(Wp, Ws, Rp, Rs);
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Matlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter Design
• Filter Design
• For IIR filter design using bilinear transformation, 

MATLAB statements to use are:
[b, a] = butter(Nb, Wn), ,

[b, a] = cheby1(Nc, Rp, Wn)

[b, a] = cheby2(Nc, Rs, Wn)

[b, a] = ellip(Ne, Rp, Rs, Wn)

• No need to think about bilinear transform
• Transfer function can be computed using freqz(b a w)• Transfer function can be computed using freqz(b, a, w)

where w is a set of angular frequencies
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Matlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter Design
• Design an elliptic IIR lowpass filter with 

F 0 8 kH F 1 kH F 4 kH 0 5Fp=0.8 kHz, Fs=1 kHz, Fsample=4 kHz, p = 0.5 
dB, s=40 dB

• Code fragments used are:• Code fragments used are:
[N,Wn] = ellipord(0.8/(4/2), 1/(4/2), 0.5, 40);

Result: N=5 order W =0 4– Result: N=5. order, Wn=0.4
(compare with Nb=18, Nc=8)

[b a] = ellip(N 0 5 40 Wn);[b, a] = ellip(N, 0.5, 40, Wn);

• Full example: IIRdesign.m
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Matlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter DesignMatlab IIR Digital Filter Design

0

Elliptic IIR Lowpass Filter

-0 1

0
Passband Details

-20

G
ai

n,
 d

B

-0.3

-0.2

-0.1

G
ai

n,
 d

B
0 0.2 0.4 0.6 0.8 1

-60

-40G

0 0.1 0.2 0.3 0.4
-0.5

-0.4

G
0 0.2 0.4 0.6 0.8 1

/
0 0.1 0.2 0.3 0.4

/

DEPARTMENT OF INFORMATICS 62



UNIVERSITY 
OF OSLO

9 8 Effekter av endelig ordlengde9.8 Effekter av endelig ordlengde
• Koeffisienter blir avkortet

– Som regel blir det en liten endring av frekvensresponsSom regel blir det en liten endring av frekvensrespons
– Katastrofal feil: en pol innenfor |z|=1 kan havne utenfor (bare 

IIR)
• Aritmetikken foregår med endelig presisjon

– Filteret blir et ikke-lineært system
– Kvantiseringsstøy og avrundingsstøy
– Feil pga overstyring

• Limit cycles: Oscillasjoner på utgangen uten inngang• Limit cycles: Oscillasjoner på utgangen uten inngang
– Bare i IIR da det trenger tilbakekobling
– Fullskala oscillasjoner hvis overstyring folder rundt 

(x>xmax ⇒ –xmax) i stedet for metning (x>xmax ⇒ xmax)
– Små oscillasjoner hvis avrunding istedet for avkorting
– http://cnx.org/content/m11928/latest/
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