Lecture 5
Access Control and Security Models

Audun Jøsang
Introduction to access control

Physical Access Control:

Logical Access Control:

(theme for this lecture)
Introduction to access control

• Access Control
 – controls how users and systems access other systems and resources
 – prevents unauthorized users access to resources
 – prevents authorized users from misusing resources

• Some information assets may be accessible to all, but access to some information assets should be restricted.

• Unauthorized access could compromise
 – Confidentiality
 – Integrity
 – Availability
 of information assets
Basic concepts

• Access control philosophies:
 – *Who should have access to resources?*

• Access requests can be:
 – generally permitted unless expressly forbidden
 example: blacklist
 • If your name is on the list, you will be denied access
 – generally forbidden unless expressly permitted
 example: least privilege, need to know
 • user access restricted to resources they need to perform their day-to-day business function, and nothing more
 • This is generally more secure
Basic concepts

• Access control philosophies continues:

• Separation of privileges:
 – A subject should not be able to execute a highly critical task alone
 • More than one person is required to complete the task
 • E.g. Financial transactions may require authorisation of two users
 – Conflict of interest should be avoided
 • E.g. A lawyer should not handle two sides of the same case, or handle the cases of competitors
Basic concepts

• Access control terminology:
 – Subjects
 • Entities requesting access to a resource
 • Examples: Person (User), Process, Device
 • Active
 • Initiate the request and is the user of information
 – Objects
 • Resources or entities which contains information
 • Examples: Disks, files, records, directories
 • Passive
 • Repository for information, the resources that a subject tries to access
Basic concepts

• Modes of access:
 – *What access permissions (authorizations) should subjects have?*

• If you are authorized to access a resource, what are you allowed to do to the resource?
 – Example: possible access permissions include
 • read - observe
 • write – observe and alter
 • execute – neither observe nor alter
 • append - alter
Basic Concepts

• Sequence of Identification, authentication and access control

Identification: Who are you?
Authentication: Is it really you?
Access Control: Are you authorized to access this resource?
Basic concepts

• Three phases of access control
 1. Policy definition (authorization) phase
 a. Authorise subject by defining the AC policy
 b. Distribute access credentials/token to subject
 c. Change authorization whenever necessary
 2. Policy enforcement (grant access) phase*
 a. Authenticate subject
 b. Grant access as authorised by policy
 c. Monitor access
 3. Termination phase
 De-register identity / Revoke authorization
Authentication and Access phases

Set-up & Policy Phase
- Identity Registration
- Access Authorization

Operation Phase
- Identity Authentication
- Access Control

Termination Phase
- Identity Revocation
- Access Revocation

Subject
- Off-line
- Online

Object
- Resource
Access control conceptual diagram
WS-Security terminology and architecture (http://www.oasis-open.org/specs/index.php)

Resource provider domain

IdP - Resource owner

Object resource

Subject

access request
+ object & access type

User authentication

PAP: Policy Administration Point
PEP: Policy Enforcement Point
PDP: Policy Decision Point
IdP: Identity Provider

UiO Spring 2010 L05 - INF3510 Information Security
Basic concepts

• Access control approaches:
 – How do you define which subjects can access which objects?

• Three main approaches
 – Discretionary access control (DAC)
 – Mandatory access control (MAC)
 – Role-based access control (RBAC)
Basic concepts: DAC

• Discretionary access control
 – Access rights to an object or resource are granted at the discretion of the owner
 • e.g. security administrator, the owner of the resource, or the person who created the asset
 – DAC is discretionary in the sense that a subject with a certain access authorization is capable of passing that authorization (directly or indirectly) to any other subject.
 – Usually implemented with ACL (Access Control Lists)
 – Popular operating systems use DAC.
Basic concepts: ACL

- **Access Control Lists (ACL)**
 - Attached to an object
 - Provides an access rule for a list of subjects
 - Simple means of enforcing policy
 - Does not scale well

- ACLs can be combined into an access control matrix covering access rules for a set of objects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O1</td>
</tr>
<tr>
<td>S1</td>
<td>rw</td>
</tr>
<tr>
<td>S2</td>
<td>r</td>
</tr>
<tr>
<td>S3</td>
<td>-</td>
</tr>
<tr>
<td>S4</td>
<td>rw</td>
</tr>
</tbody>
</table>
DAC in popular operating systems

Windows XP

Apple OS X

Terminal — bash — 80x21

Colin-Boyd's Computer:~/Documents/Teaching/ITB730 colin$ cd
Colin-Boyd's Computer:~/Documents/Teaching/ITB730
Colin-Boyd's Computer:~/Documents/Teaching/ITB730 colin$ ls -l

```
total 2768
```
```
drwxrwxrwx 14 colin colin 476 16 Feb 12:18 061-ITB730
drwxr-xr-x  7 colin colin 238 11 Mar 11:21 062_730
```
Basic concepts: MAC

• Mandatory access control
 – A central authority assigns access privileges
 – Usually implemented with security labels
 • Example: Clearance and classification levels
 – A system-wide **set of rules** is formed relating the attributes of the objects and subjects to the modes of access that are permitted
 – MAC is mandatory in the sense that the system is denying users full control over the access to the resources they create.
 – (SE)Linux includes MAC
Basic concepts: Labels

• Security Labels can be assigned to subjects and objects
 – Represents a specific security level, e.g. “Confidential” or “Secret”
• Object labels are assigned according to sensitivity
• Subject labels are determined by the authorization policy
• Access control decisions are made by comparing the subject label with the object label according to rules
• The set of decision rules is a security model
 – Used e.g. in the Bell-LaPadula and Biba models (see later)
Basic concepts: Combined MAC & DAC

Combining access control approaches:

- A combination of mandatory and discretionary access control approaches is often used
 - Mandatory access control is applied first:
 - If access is granted by the mandatory access control rules,
 - then the discretionary system is invoked
 - Access granted only if both approaches permit
 - This combination ensures that
 - no owner can make sensitive information available to unauthorized users, and
 - ‘need to know’ can be applied to limit access that would otherwise be granted under mandatory rules
Basic concepts: RBAC

• Role based access control
 – Access rights are based on the role of the subject, rather than the identity
 • A role is a collection of procedures or jobs that the subject performs
 • Examples: user, administrator, student, etc
 • A subject could have more than one role, and more than one subject could have the same role
 – RBAC can be combined with DAC and MAC
Security Models Introduction

- In order to describe an access policy, it is necessary to describe the entities that the access policy applies to and the rules that govern their behaviour.
- A security model provides this type of description.
- Security models have been developed to describe access policies concerned with:
 - Confidentiality (Bell-LaPadula, Clark-Wilson, Brewer-Nash, RBAC)
 - Integrity (Biba, Clark-Wilson, RBAC)
 - Prevent conflict of interest (Brewer-Nash, RBAC)
The Bell-LaPadula Model

Important Point:
The Bell-LaPadula model has its origins in the military’s need to maintain the confidentiality of classified information.
Bell-LaPadula Model: Overview

• While working for the Mitre Corporation in the 1970s, David E. Bell and Leonard J. LaPadula developed the Bell-La Padula Model in response to US Air Force concerns over the security of time-sharing mainframe systems.

• The Bell-LaPadula model focuses on the confidentiality of classified information – a Confidentiality-focussed Security Policy.

• The model is a formal state transition model of computer security policy that describes a set of access control rules enforced through the use of security labels on objects and clearances for subjects.
Bell-LaPadula Model: Information Flow

- **Subjects** are active entities in the system (for example users, processes, other computers), that cause information to flow among objects or change the system state.

- The Bell-LaPadula model is often called an *information flow model*. It is concerned with how information of different security sensitivity is allowed to flow amongst different objects.
Bell-LaPadula Model: Hierarchical Security Levels

- Security levels are typically used in military and national security domains
- Provide coarse-grained access control
Bell-LaPadula Model: Limitation of security levels

- Simple hierarchical levels alone are sometimes too coarse to implement adequate access control.
- A person (subject) with Secret clearance may not need access to all information files (objects) classified as Secret in order to perform their job.
- One of the principles of good security is to enforce access control based on ‘need to know’.
Access Categories

• To implement the ‘need to know’ principle, define a set of non-ordered categories.
 – Subject and objects can have a set of categories in addition to their hierarchical security level;

• Example categories could be
 – Names of departments, such as:

 Development – Production – Marketing – HR

• Not originally part of the Bell-LaPadula model
Bell-LaPadula Model: Security Labels

- Each subject and object has a Security Label
 - Subjects have a Maximum Security Label L^{SM}.
 - Subjects can use a Current Security Label $L^{SC} \leq L^{SM}$
 - Objects have a fixed Security Label L^{O}.
- The aim is to prevent subjects from accessing an object with a security label that is incompatible with the subject’s security label.
- Subjects can chose to use a lower “current” label than their maximum label when accessing objects.
Bell La Padula Model: Security Labels and Domination

- Security labels that are assigned to subjects and objects can consist of two components
 - a hierarchical level, and
 - a set of categories (not originally part of Bell-LaPadula)
- Label dominance
 - Let label $L_A = (h\text{-level}_A, \text{category-set}_A)$
 - Let label $L_B = (h\text{-level}_B, \text{category-set}_B)$.
 - Then L_A dominates L_B iff
 - $h\text{-level}_B$ is less than or equal to $h\text{-level}_A$ and
 - category-set$_B$ is a subset of category-set$_A$.
Partial Ordering of Labels

- Example: Define a label \(L = (h, c) \) where
 - \(h \in \) hierarchical set \(H = \{\text{Unclassified, Secret}\} = \{U, S\} \)
 - \(c \subseteq \) category set \(C = \{\text{Development, Production}\} = \{D, P\} \)

\[
\begin{align*}
(U, D) & \quad (S, D) & \quad (S, \emptyset) & \quad (S, \{D, P\}) \\
(U, \{D, P\}) & \quad & (U, P) & \\
(U, \emptyset) & \quad & & \\
\end{align*}
\]

\(\Rightarrow \) dominates
Definition of label dominance

- Labels defined as: \(L = (h, c) \), \(h \in H \) and \(c \subseteq C \)

 \(H \): set of hierarchical levels, \(C \): set of categories

- Example labels: \(L_A = (h_A, c_A) \), \(L_B = (h_B, c_B) \),

- Dominance: \(L_A \geq L_B \) iff \((h_B \leq h_A) \land (c_B \subseteq c_A) \)
 - In case \(L_A = L_B \) then also \(L_A \geq L_B \) and \(L_B \geq L_A \)

- Non-dominance cases: \(L_A \npreceq L_B \)
 - \((h_B > h_A) \land (c_B \subseteq c_A) \); insufficient security level
 - \((h_B \leq h_A) \land (c_B \not\subseteq c_A) \); insufficient category set
 - \((h_B > h_A) \land (c_B \not\subseteq c_A) \); insufficient level and category
Bell-LaPadula Model: Security Properties

• In each state of a system the Bell-LaPadula model maintains three security properties:
 – ss-property (simple security)
 – * -property (star)
 – ds-property (discretionary security)
Bell-LaPadula Model: SS-Property: No Read Up

- Regulates read access
- The ss-property is satisfied if,
 - **Subject** Maximum Label L^{SM} dominates **Object** Label L^{O} for all current accesses where **Subject** has observe (read) access to **Object**:
- You can read a file if its hierarchical security level is lower than or equal to yours, and the category of this file is in your ‘need to know’ set.
- Traditionally known as the “no read-up” policy.
- In practice $L^{SC} = \max L^{O}$ of current accessed obj
Bell-LaPadula Model: SS-Property: No Read Up
Bell-LaPadula Model:

*-Property: No Write Down

- Subjects working on information/tasks at a given label should not be allowed to write to a lower level because this could leak sensitive information.
- For example, you should only be able write to files with the same label as your label, or
- you could also write to files with a higher label than your label, but you should not be able to read those files.
Bell-LaPadula Model:
*-Property: No Write Down

Current Subject label
Secret

write
write

Object Labels
Confidential
Secret
Top Secret

write

Diagram
Bell-LaPadula Model:

-Property: Simultaneous read/write access

- The ss-property alone is not sufficient to prevent unauthorized information flow.
- A subject could choose read access to a high-level security object and choose write access to a low-level security object.
- This would enable data from a high-level object to be accessible to a subject with a low Maximum Security Label.
- Therefore, we also have to control simultaneous read-write accesses.
Subjects as (illegal) information channels

- Subjects could request write access to resources at low level while they have read access at high level
- Could cause information leakage:
Bell-LaPadula Model:
*-Property: No Write Down

- The *-property (star property) regulates simultaneous read and write access.
- The *-property is satisfied if,
 - For all cases where a Subject has simultaneous alter (write or append) access to Object\textsubscript{A} and observe (read) access to Object\textsubscript{B}, then the security label of Object\textsubscript{A} dominates the security label of Object\textsubscript{B}
- This is known as the “no write-down” policy
- In practice $L^O(w) \geq L^{SC}$ (every object accessed for writing must dominate the current subject label)
Bell-LaPadula label relationships

Possible L^{SM}

Current Subject label $L^{SC} = L^{OE}$

write access

read access

object labels L^{O}
Bell-LaPadula Model: DS Property: Matrix Entry

- $M(i,j)$ satisfies current access request

Diagram

Access request: \{subject = i, object = j, access = \textit{write}\}
Bell-LaPadula Model:
DS Property: Matrix Entry

- The ds-property (discretionary security property) is a Bell-LaPadula security model rule that demands that the current access by subject S to object O is permitted by the current access permission matrix M.
- This was the original method to enforce need-to-know in Bell-LaPadula.
Bell-LaPadula Model: Basic Security Theorem

- If the initial state is secure and all state transitions in a system are secure, then all subsequent states will also be secure no matter what inputs occur.

The Bell-LaPadula model is a formal state transition model.
Bell-LaPadula Tranquility

- Bell-LaPaAdula does not specify rules for changing access control policies (i.e. changing labels on subjects and objects).
 - assumes *tranquility*: access control policies do not change.
- Operational model: users get clearances and objects are classified following given rules.
- The system is set up to enforce MLS (Multi-Level Security) policies for the given clearances and classifications.
- Changes to clearances and classifications requires external input.
The Biba Model for Integrity

- In Biba, subjects and objects have integrity labels.
- *The Biba Simple Integrity Axiom* states that a subject at a given level of integrity must not read an object at a lower integrity level (no read down).
- *The Biba * (star) Integrity Axiom* states that a subject at a given level of integrity must not write to any object at a higher level of integrity (no write up).
- Opposite to Bell-LaPadula.
- Combining Biba and Bell-LaPadula results in a model where subjects can only read and write at their own level.
The Brewer-Nash Chinese Wall Model
Brewer-Nash model:
Overview

• The Brewer-Nash model is a confidentiality model for the commercial world.
 – In a consultancy-based business, analysts have to ensure that no conflicts of interest arise in respect to dealings with different clients.
 – A conflict of interest is a situation where someone in a position of trust has competing professional and/or personal interests and their ability to carry out their duties and responsibilities objectively is compromised or may be seen to be compromised.

• Rule: There must be no information flow that causes a ‘conflict of interest’.
Brewer-Nash model: Sanitized and Unsanitized Information

• Assume that a consultancy-based business has confidential information pertaining to individual companies that are its clients.
 – Information that can be identified as belonging to a particular company is deemed to be **unsanitized**.
 – Information that cannot be identified as belonging to a particular company is deemed to be **sanitized**.
 – Also, where information is held regarding a company but it is not confidential (already public knowledge say), this information is not subject to the policy implemented by this model.

• The Brewer-Nash model is concerned with the flow of **unsanitized** information.
 – Sanitized information flow is not of concern in this model.
Brewer-Nash model: Objects, Datasets & Conflict Classes

- **Objects**:
 - Individual items of information belonging to a single corporation are stored as objects;
 - Each object has a security label
 - Security labels contain information about which company the object belongs to, and the ‘conflict of interest’ class the object belongs to.

- **Company datasets**:
 - All objects which concern the same corporation are grouped together into a company dataset;

- **Conflict classes**:
 - All company datasets whose corporations are in competition are grouped together into the same conflict of interest class.
Brewer-Nash model: Chinese Wall Example

• Scenario:
 – A marketing agency handles accounts for companies involved in:
 • confectionary manufacture (Class A),
 • car rental (Class B), and
 • clothing (Class C).
 – The car rental companies are:
 • Hurts (company d),
 • Aviz (company e), and
 • Eurocar (company f).
• Let’s say a marketing analyst has previously only accessed object \(O_2 \) in the company dataset e (Aviz) of conflict class B (car rental)
Brewer-Nash model: Chinese Wall Example

Conflicts classes: A, B, C

Class A

Class B

Class B Company datasets

Class C

Objects of Company e
Brewer-Nash model: Chinese Wall Example

- The analyst cannot now access any objects in company datasets d or f (Hurts or Eurocar).
 - Aviz, Hurts and Eurocar are in competition with each other. Accessing information belonging to d or f would lead to a conflict of interest.

- The analyst can access an object in conflict class A (confectionary) or conflict class C (clothing).
 - Insider information about confectionary and clothing companies does not represent a conflict of interest with Aviz (car rental) as confectionary and clothing companies are not in direct competition with car rental companies.
Brewer-Nash model: Mandatory Access Control

Diagram

Class A

Class B

Class C

Company datasets

‘Chinese Wall’ preventing access
Brewer-Nash model: Mandatory Access Rules

- Initially the analyst may access any file from any dataset
 - In our example, the analyst can access object 2, Company e dataset, Conflict class B.
- Thereafter, the analyst:
 - can access any other object (file) in Dataset e, or
 - can access any object in the hierarchy of Conflict classes A or C,
 - but cannot access any object in Dataset d or f of Conflict class B.
Brewer-Nash model: Access Matrix (N)

<table>
<thead>
<tr>
<th>Object</th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
<th>O_4</th>
<th>O_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>S_i</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Brewer-Nash model: Access Matrix (N)

- The Access Matrix N determines a subject’s right to access an object.
 - The rows of N represent subjects and the columns represent objects.
 - The elements in N are boolean values -- true or false.
 - Element N(i,j) indicates whether subject i has been granted previous access to object j.
 - Initially all entries of the matrix N are set to f (false) – no objects have been previously accessed by any subjects.
 - When subject i is granted access to object j, N(i,j) is set to t (true).
- In order to determine if an access request can be approved, all previous accesses that have occurred must be considered.
Brewer-Nash model: Simple Security (ss) Property

- Access to object O_j is granted to subject S_i only if O_j belongs to:
 - A company dataset CD already accessed by the subject (i.e. O_j is in CD and $N(i,k) = t$ for some O_k in CD)
 or
 - An entirely different conflict of interest class COI (i.e. O_j is in COI and for all objects O_k in COI, $N(i,k) = f$)
Brewer-Nash model:
Star (*) Security Property

• Suppose two analysts, user A and user B, have the following access:
 – User A has access to information about car rental company e and confectionary company a.
 – User B has access to information about car rental company d and confectionary company a.
• If user A reads information from company e and writes it to a company a object, then user B has access to company e information.
• This should not be permitted because of the conflict of interest between company e and company d.
Brewer-Nash model: Star (*) Security Property

- Write access is only permitted if:
 - access is permitted by the ss rule, and
 - no object can be read which is in a different company dataset from the one for which write access is requested and contains unsanitized information.

- In other words, write access is granted only if no other object (with unsanitized data) can be currently read which is in a different company dataset (in any conflict class)
The Clark-Wilson Model
Clark Wilson model: Overview

- The Clark-Wilson Security model is an *integrity* model for the commercial environment.
- There is an emphasis on controlling transaction processing.
- The Clark-Wilson Security model provides a formal model for commercial integrity
 - The model attempts to prevent unauthorised modification of data, fraud and errors.
Clark Wilson model:
Overview

• The Clark-Wilson Security model attempts to follow the conventional controls used in bookkeeping and auditing through certification and enforcement.

• Data is divided into two types
 – Unconstrained data items (UDI)
 – Constrained data items (CDI)

• CDIs cannot be accessed directly by users - they must be accessed through a transformation procedure (TP)

• In certain circumstances UDI may become CDI
Clark-Wilson model: System Integrity

- Internal consistency:
 - Is the internal state of the system consistent at all times?
 - This can be enforced by integrity verification procedures (IVPs)
 - The IVPs certify that the CDIs are in a valid state
 - The TPs must preserve state validity
Clark Wilson model: Security Requirements Overview

- Every user must be identified and authenticated.
- Each data item can only be manipulated by a particular set of allowed programs.
- Each user can run only a particular set of programs.
- Separation of duty and well-formed transaction rules must be enforced by the system.
- Auditing log must be maintained.
The RBAC Model
Role Based Access Control
Role-Based Access Control

- A brief introduction
 - Based on Proposed NIST Standard for Role-Based Access Control

The “RBAC Beast”
RBAC rationale

• A user has access to an object based on the assigned role.
• Roles are defined based on job functions.
• Permissions are defined based on job authority and responsibilities within a job function.
• Operations on an object are invoked based on the permissions.
• The object is concerned with the user’s role and not the user.
RBAC Flexibility

User’s change frequently, roles don’t

• RBAC can be configured to do MAC
• RBAC can be configured to do DAC
RBAC Privilege Principles

- Roles are engineered based on the principle of least privilege.
- A role contains the minimum amount of permissions to instantiate an object.
- A user is assigned to a role that allows him or her to perform only what’s required for that role.
- No single role is given more permission than the same role for another user.
RBAC Framework

- **Core Components**
- **Constraining Components**
 - Hierarchical RBAC
 - Allows roles to be defined in a hierarchy, and role inheritance
 - Constrained RBAC
 - Can prevent conflict of interest in two ways
 - SSD (Static Separation of Duties) prevents assignment of conflicting roles
 - DSD (Dynamic Separation of Duties) allows assignment of conflicting roles, but prevents their simultaneous invocation
RBAC Core Components

- Defines:
 - USERS
 - ROLES
 - OPERATIONS \((ops)\)
 - OBJECTS \((obs)\)
 - User Assignments \((ua)\)
 - assigned_users

- Permissions \((prms)\)
 - Assigned Permissions
 - Object Permissions
 - Operation Permissions

- Sessions
 - User Sessions
 - Available Session Permissions
 - Session Roles
Core RBAC

Legend:

OPS: Operations and transactions

OBS: Objects, databases, files

PRMS: Permissions

Diagram:

- ** USERS ** (UA) User Assignment
- ** ROLES ** (PA) Permission Assignment
- ** OPERATIONS ** (OPS)
- ** OBJECTS ** (OBS)
- ** SESSIONS **
- ** user_sessions **
- ** session_roles **
RBAC UA (user assignment)

USERS set
A user can be assigned to one or more roles

ROLES set

- Developer
- Help Desk Rep

A role can be assigned to one or more users
RBAC PA (prms assignment)

PRMS set
- Create
- Delete
- Drop
- View
- Update
- Append

A prms can be assigned to one or more roles

ROLES set
- Admin.DB1
- User.DB1

A role can be assigned to one or more prms
RBAC Models

<table>
<thead>
<tr>
<th>Models</th>
<th>Hierarchical</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBAC₀</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RBAC₁</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RBAC₂</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RBAC₃</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Core RBAC

Effort/complexity

Feature richness

RBAC₀ → RBAC₃
RBAC Operational Aspects

• System Level Functions
 – Creation of user sessions
 – Role activation/deactivation
 – Constraint enforcement
 – Access Decision Calculation

• Administrative Operations
 – Create, Delete, Maintain elements and relations

• Implementation challenge
 – Large number of different roles can become a problem in practical implementations
AC Limitations: Covert Channels

- Covert Channels are Communications channels that allow transfer of information in a manner that violates the system’s security policy.
 - **Storage channels**: e.g. through operating system messages, file names, etc.
 - **Timing channels**: e.g. through monitoring system performance
- Orange Book: 100 bits per second is ‘high’ bandwidth for storage channels, no upper limit on timing channels.
- Security models do not consider covert channels
AC Limitations: Platform Security

• AC (Access Control) systems assume the integrity and security of the platform on which they are implemented.
• In case access to a database system is protected by AC, but the OS can not protect the AC functionality, then the AC System can be bypassed by attackers.
Review

- Physical or logical AC
- AC philosophy and basic concepts
- Authentication and AC sequence
 - Identification – Authentication – Access Control
- Authentication and Access phases
 - Registration/Authorization – Authentication/Access Control
- MAC, DAC, RBAC
- Formal Models
 - Bell-LaPadula, Biba, Brewer-Nash, Clark-Wilson, RBAC
- Covert channels and platform security