Who am I?

- Enterprise Security @Telenor and Assoc Professor @HiG
- PhD and MSc from NTNU / UCSB
- Økokrim / Kripos from 2003 to 2008
- All opinions in this presentation are my own and all facts are based on open sources and state-of-the-art research.
Objectives

- What is digital forensics and investigations
- What are the central principles and processes
- Real world examples
- Not a "computer forensics" course
- Partially based on the book "Forensic Discovery"

Forgery?

http://www.dagbladet.no/kultur/2007/10/30/516705.html
Digital Investigations

Central Principles and Definitions

Investigation Process

- Identification: Verification of event
- Collection: Evidence collection and acquisition
- Examination: Preparation and examination
- Analysis: Using scientific methods
- Reporting: Documentation and presentation
Digital Forensics in Law Enforcement

Core Competencies of Digital Investigations

- Tactical • Police
- Technical • Computer Science • Electrical Engineering
- Legal • Prosecution
Digital Forensics

Central Principles and Definitions

Forensic Science

- The application of science and technology to investigate and establish facts of interest to criminal or civil courts of law. For example:
 - DNA analysis
 - Trace evidence analysis
 - Firearms ballistics
- Implies the use of scientific methodology to collect and analyse evidence. For example:
 - Statistics
 - Logical reasoning
 - Experiments
Digital Evidence

- We define digital evidence as any digital data that contains reliable information that supports or refutes a hypothesis about an incident.
- Evidence dynamics is described to be any influence that changes, relocates, obscures, or obliterates evidence, regardless of intent.

Some Terminology

- Digital Forensics
- Computer Forensics
- Network Forensics
- Digital Investigations
- Internet Investigations
- Computational Forensics
Evidence Integrity

- Evidence integrity refers to the preservation of the evidence in its original form. This is a requirement that is valid both for the original evidence and the image.
- Write-blockers ensure that the evidence is not accidentally or intentionally changed
 - Hardware
 - Software
- In some cases, evidence has to be changed during acquisition, see discussion of OOV below.

Digital Fingerprints

- Purpose is to prove that evidence and image are identical – using cryptographic hash algorithms
- Input is a bit stream (e.g., file/partition/disk) and output is a unique hash (file signature)
- We use cryptographic hash algorithms (e.g., MD5, SHA1, SHA256). These are non-reversible and it is mathematically infeasible to find two different files that create the same hash.
Chain of Custody

- Chain of custody refers to the documentation of evidence acquisition, control, analysis and disposition of physical and electronic evidence.
- The documentation can include laboratory information management systems (LIMS), paper trails, notebooks, photographies, etc.
- Mechanisms:
 - Timestamps and hash values
 - Checklists and notes
 - Reports

Order of Volatility (OOV)

- Collect the most volatile data first – this increases the possibility to capture data about the incident in question.
- BUT: As you capture data in one part of the computer, you're changing data in another
- The Heisenberg Principle of data gathering and system analysis: It's not simply difficult to gather all the information on a computer, it is essentially impossible.
Dual-tool Verification

- Verification of analysis results by independently performing analysis on two or more distinct forensic tools.
- The purpose of this principle is to identify human and software errors in order to assure repeatability of results.
- The tools should ideally be produced by different organizations/programmers.

Forensic Soundness

- The term *forensically sound* methods and tools usually refers to the fact that the methods and tools adhere to best practice and legal requirements.
- A typical interpretation:
 - Source data is not altered in any way
 - Every bit is copied, incl. empty and unavailable space
 - No data is added to the image.
ACPO Principles (ACPO p. 6)

1. No action taken by law enforcement agencies or their agents should change data held on a computer or storage media which may subsequently be relied upon in court.
2. In exceptional circumstances, where a person finds it necessary to access original data held on a computer or on storage media, that person must be competent to do so and to be able to give evidence explaining the relevance and the implications of their actions.
3. An audit trail or other record of all processes applied to computer based electronic evidence should be created and preserved. An independent third party should be able to examine those processes and achieve the same results.
4. The person in charge of the investigation has overall responsibility for ensuring that the law and these principles are adhered to.

Investigation Process
Analysing Digital Evidence

Analysis and Abstraction Layers

- Unusual activity stands out, e.g.:
 - Location in file system
 - Timestamps (most files are rarely used)
- Fossilization of deleted data
- Turing test of computer forensic analysis
- Digital archaeology vs. geology

Users and applications
File system
Hardware
Crime Scene Reconstructions

Crime Scene Reconstructions is a method to determine the most probable hypothesis or sequence of events by applying the scientific method to interpret the events that surround the commission of a crime. The hypothesis can be tested using statistical or logical reasoning or through experiments.

Automated Analysis

- Automated analysis may be implemented using scripting in popular tools, but this is still to some degree an open research problem.
- Automated analysis and reporting can provide increased efficiency and reduces risk of mistakes.
- However, automated analysis can not substitute a human analyst -- an experienced analyst can find important evidence in ways that cannot be formalized as an algorithm.
Case Analysis

- Case analysis incorporates both digital, physical and tactical evidence.
- Findings from multiple sources of evidence and information can be managed in a spreadsheet or database.
- Purpose of analysis is to find new links and connections in evidence.
- Data can be visualized to present case for third parties and in court.

Reporting

- Chain of custody and evidence integrity
- Document the task given by supervisor
- Give a summary for easy access to information
- Document all steps and results for repeatability
- Third parties should be able to repeat all steps in the report and achieve the same results
Testimony

- A testimony in court is based on your own observations regarding evidence
- An expert witness can be challenged on the integrity of the evidence and the soundness of the conclusions
Internet Investigations

Tracing and Evidence Acquisition
The Internet

- A network of networks
- Built to provide reliable and robust connectivity
- No inherent security and traceability
- No inherent user identification
- No inherent accountability or logging

Internet Investigations

- Identification
 - Validation
- Acquire Evidence
 - Analysis to find source of crime / new addresses
- Tracing address
 - Using passive and active methods
- Legal Request
 - To appropriate jurisdiction to freeze and seize evidence
Police Cooperation

• Typical Requests (described in Cyber Crime Convention)
 – Identify subscriber information for an IP address
 – Search and seize digital evidence
 – Real-time collection of traffic data
 – Real-time collection of content data
• Prerequisites for effective enforcement
 – Harmonized legal framework
 – Resources to enforce
 – Fast and effective cooperation

Police Cooperation -- Example

– A long lasting investigation of a botnet involved in online bank fraud has finally reached a new step – recent investigation shows that the botnet has been controlled by the IP-address 234.23.34.4 on June 1st 2010 21:00 CET.
– Please assist with the following:
 1. Identify subscriber information
 2. Search and seize computer equipment
 3. Perform real-time collection of traffic data prior to search
Police Cooperation - Framework

- Arenas of cooperation
 - Interpol
 - Europol/ Eurojust
 - G8 Subgroup on High Tech Crime
 - Bilateral

Technical Tracing

Passive Methods
- The use of third party sources to get information about address
- Examples:
 - IP whois (IP and BGP information)
 - DNS whois
 - DNS lookup
 - Reverse DNS lookup

Active Methods
- Connecting to the target host or network to gain further information
- May impact or compromise investigation
- Examples:
 - Ping, traceroute and portscan
 - Connecting to a website
 - Participating in P2P network
Uncertainties in Tracing (1/2)

- **Stepping Stones**
 - The perpetrator can use computers in multiple networks to hide his own location. A successful trace will involve multiple jurisdictions.

- **Anonymization networks and network tunneling**
 - The perpetrator can access the Internet through an anonymization network (e.g., Thor) or encrypted tunnel to hide his own location.

- **Network architecture**
 - Network architecture elements such as private networks (NAT) and virtual private networks (VPN) can hide the actual address of the perpetrator behind a public address.

- **Registration issues**
 - The public registers on the Internet (WHOIS registers) may contain incorrect information and it is possible to manipulate WHOIS entries, creating difficulties for tracing attempts.
Thor
- Anonymization network
- Encrypts messages
- Randomized hop sequence

Online Evidence Acquisition

- Online evidence should be handled as any other evidence, i.e., by ensuring evidence integrity and chain of custody.
- There are few tools available for this purpose – the investigator must be sufficiently competent to maintain a chain of custody and be able to prove that evidence integrity is preserved.
Types of Evidence

- Client data (email, Internet history, malware)
- Domain name and IP addresses
- Network monitoring, intrusion detection, and log data
- Internet content (web, social networks, etc)
- Multimedia streaming data on the Internet
- Online email and calendar accounts
- Online cache (e.g., Google)
- Online archives (e.g., www.archive.org)

Uncertainties and Evidentiary Value

- Who is at the keyboard
 - It can be very hard to prove who was physically using a computer at a particular time
- Uncertainties of origin
 - There are many ways to hide your identity on the Internet, and addresses change over time
- Timestamp inaccuracies
 - There are no standard means of synchronizing and storing timestamps
- Transient nature
 - Evidence changes over time
"The Trojan Did It!"

- Could the perpetrator be a third party with access to the suspect computer using a Trojan?
- UK 2002 arrest in child pornography case
 - Analysis identified 11 trojan horse programs on computer
 - Case acquitted
- UK 2001 DDoS attack on US site
 - No traces of malware detected during analysis
 - Case acquitted due to possibility of trojan
The Challenge

- Scattered evidence across jurisdictions
 - Need to coordinate and synchronize law enforcement across multiple jurisdictions
 - Cooperative efforts from several nations is necessary.
- Large and complex networks of evidence
 - Massive amounts of data
 - Heterogeneous evidence types and format
- No a priori knowledge about evidence
 - Relationship between devices not known
 - Access to only subset of potential evidence

One Case – Multiple Sources of Evidence

- Internet
 - E.g., web, social networks, email
- Computers
 - E.g., malware, peer to peer, logs
- Mobile phones
 - E.g., malware, logs, sms, email
- Physical evidence
 - E.g., fingerprints, trace evidence
- Telecommunications and bank transactions
Intelligent Processing and Analysis

Identification
• Verification of event

Collection
• Evidence collection and acquisition

Examination
• Preparation and examination

Analysis
• Using scientific methods

Reporting
• Documentation and presentation

Collecting large amounts of evidence and making it available for automated processing.

Automated preprocessing of evidence to facilitate quick detection of links and common patterns.

Automated and manual analysis of identified evidence, e.g., malware analysis, log analysis.

Visualization is key to promote understanding and standard formats facilitate integration with other tools.

Analysis – Tools and Methods

• Link analysis and data mining
 – Establishing relationships between devices and events

• Timelining physical and logical events
 – Understanding the order of events

• Event based reconstruction
 – Understanding causal relationships based on a hypothesis

• Automated search and file matching
 – Search for known text strings or files
Case: Online Bank Fraud

- Online bank fraud involves multiple parties and leaves evidence in many places:
 - Bank transactions from victim
 - Malware on victim host and botnet evidence
 - Server side logs at bank
 - Communication with mule (email and phone)
 - Transactions from mule
 - Network monitoring logs
Transaction Agents

Evidence Overview

- Register of all victims
- Bot Master
- Source of infection
- Web logs, transaction logs
- Communication with organization, web cache data
- Malware, log data, Internet history
Link Analysis

Found in Victim A
- IP address 11.11.11.11
- DNS my.owned.com
- Signature: PwNd
- Malware detected: Trojan/BadNews.B

Found in Victim B
- IP address 11.11.11.12
- DNS my.bruteforce.com
- Signature: PwNd
- Malware detected: Trojan/BadNews.B

Found in Victim C
- IP address 11.11.11.11
- DNS my.bruteforce.com
- Signature: 1337 H4X0R
- Malware detected: Trojan/BadNews.A

Timeline Analysis

Infection Phase

Surveillance and Monitoring Phase

Execution Phase

Event Types
- Based on digital evidence from seized computers
- Based on information provided by bank
Hacking-as-a-service

“...For the price of 3,000 dollars, our reporter was offered his personal bank Trojan. In an interview with Computer Sweden, the hacker behind the recent Internet frauds against Sweden's Nordea bank claims responsibility for more intrusions.”
[http://computersweden.idg.se/2.2683/1.93344]
Some Useful References

5. ACPO, "Good Practice Guide for Computer Based Electronic Evidence"
6. The Honeynet Project; in particular Scan of the month and forensic challenges
7. DOJ, “NIJ Special Report on Investigations Involving the Internet and Computer Networks” (pages 1-27, excluding “legal considerations”)

"Cuckoos Egg"

• In 1986 US$.75 led to detection of computer intrusions and ten months trying to track down the attacker, using session printouts and honeypots.
• Attacker targeted military systems and was looking for password files and documents including terms "nuclear" and "SDI".