Course organisation

- Course activities
 - Attend 2 hours lectures per week
 - Lecture notes available at least one day prior to lecture
 - Work on the workshop questions
 - Will be discussed during the following week’s workshop which follows immediately after the 2-hour lecture
 - Work on the home exam
 - Topic for the assignment can be freely chosen.
- Not just about facts, you also need to
 - understand concepts
 - apply those concepts
 - think about implications
 - understand limitations

Course Resources

- Learning material is available at:
 - http://www.uio.no/studier/emner/matnat/ifi/INF3510/v17/
 - lecture presentations, workshop questions, etc.
 - List of English security terms translated to Norwegian
- Assignment topic for home exam on:
 - https://wiki.uio.no/mn/ifi/INF3510-2017
- Various online resources
 - E.g. NIST special computer security publications
 - http://csrc.nist.gov/publications/PubsSPs.html
Lecturer

- Prof. Audun Jøsang,
- Education
 - CISSP 2005, CISM 2010,
 - PhD Information Security, NTNU, 1998
 - MSc Information Security, Royal Holloway College, London, 1993
 - BSc Telematics, NTH 1987
 - Baccalaureat, Lycée Corneille, France, 1981
- Work
 - Professor, UiO, 2008 →
 - Associate Professor, QUT, Australia, 2005-2007
 - Research Leader, DSTC, Australia 2000-2004
 - Associate Professor, NTNU, 1998-1999
 - System design engineer, Alcatel, Belgium 1988-1992

Prerequisites

- Prerequisites
 - Basic computer and network technology
 - Basic mathematics

- Theoretic focus on a basic level
 - Discrete mathematics, number theory, modular arithmetic
 - Information theory
 - Probability calculus
 - Computer and network architecture

Syllabus and text book

- The syllabus for this course consists of the material presented during the lectures, as described in the lecture notes.
- Adequate comprehension of the material requires that you also
 - read parts of the text book and other documents
 - work out answers to the workshop questions
 - follow the lectures.
- Text book: CISSP All-in-One Exam Guide
 Authors: Shon Harris (apters) and Fernando Maymí
- The book covers the 8 CBK domains (Common Body of Knowledge) for the CISSP Exam (Certified Information Systems Security Professional).
- Easy to order book from amazon.com, price approx: US$ 55
 https://www.amazon.com/CISSP-All-One-Guide-Seventh/dp/0071849270

How to use Harris’ CISSP book (7th ed.)

- 1340 pages in total
 - But exclude
 - 50 pages of appendix, glossary and index
 - 300 pages of tips, Q&A
 - Parts of chapters
 - Around 700 pages of readable material
 - The book is very easy to read 😊
 - Sometimes long explanations and examples 😊
- Each chapter has Main Sections (big font) and Subsections (small font), but no numbering
 - The lack of numbering of subsections can be confusing
Draft Lecture Plan

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>#</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>W04</td>
<td>23.01.2017</td>
<td>1</td>
<td>Course Information. Basic Concepts in IS</td>
</tr>
<tr>
<td>W05</td>
<td>30.01.2017</td>
<td>2</td>
<td>IS Management, Human Factors for IS</td>
</tr>
<tr>
<td>W06</td>
<td>06.02.2017</td>
<td>3</td>
<td>Risk Management and Business Continuity Planning</td>
</tr>
<tr>
<td>W07</td>
<td>13.02.2017</td>
<td>4</td>
<td>Computer Security</td>
</tr>
<tr>
<td>W08</td>
<td>20.02.2017</td>
<td>5</td>
<td>Cryptography</td>
</tr>
<tr>
<td>W09</td>
<td>27.02.2017</td>
<td>6</td>
<td>Key Management and PKI</td>
</tr>
<tr>
<td>W10</td>
<td>06.03.2017</td>
<td>7</td>
<td>Incident Response and Digital Forensics</td>
</tr>
<tr>
<td>W11</td>
<td>13.03.2017</td>
<td>8</td>
<td>User Authentication</td>
</tr>
<tr>
<td>W12</td>
<td>20.03.2017</td>
<td>9</td>
<td>Identity Management and Access Control</td>
</tr>
<tr>
<td>W13</td>
<td>27.03.2017</td>
<td>10</td>
<td>Network Communication Security</td>
</tr>
<tr>
<td>W14</td>
<td>03.04.2017</td>
<td>11</td>
<td>Network Perimeter Security</td>
</tr>
<tr>
<td>W15</td>
<td>Easter break</td>
<td></td>
<td>Easter break</td>
</tr>
<tr>
<td>W16</td>
<td>Easter break</td>
<td></td>
<td>Easter break</td>
</tr>
<tr>
<td>W17</td>
<td>24.04.2017</td>
<td>12</td>
<td>Development and Application Security</td>
</tr>
<tr>
<td>W18</td>
<td>No lecture</td>
<td></td>
<td>No lecture</td>
</tr>
<tr>
<td>W19</td>
<td>No lecture</td>
<td></td>
<td>No lecture</td>
</tr>
<tr>
<td>W20</td>
<td>No lecture</td>
<td></td>
<td>No lecture</td>
</tr>
<tr>
<td>W21</td>
<td>22.05.2017</td>
<td></td>
<td>Review</td>
</tr>
<tr>
<td>W22</td>
<td>No lecture</td>
<td></td>
<td>No lecture</td>
</tr>
<tr>
<td>W23</td>
<td>09.06.2017</td>
<td></td>
<td>Digital exam, time: 09:00h - 13:00h (4 hours)</td>
</tr>
</tbody>
</table>

Home Exam

- Write an essay on a security topic chosen by you
- Individual, or in group of 2 or 3 students
- Select topic and specify group on wiki: https://wiki.uio.no/mn/ifi/INF3510-2017/
- Length: 5000 - 10000 words (approx. 10 – 15 pages)
- Due date: 15.05.2017
- Assessment criteria:
 - Structure and presentation: weight ¼
 - Scope and depth of content: weight ¼
 - Evidence of independent research and analysis: weight ¼
 - Proper use of references: weight ¼

Exam statistics from previous years

<table>
<thead>
<tr>
<th>Year</th>
<th># students</th>
<th># A (%)</th>
<th># B (%)</th>
<th># C (%)</th>
<th># D (%)</th>
<th># E (%)</th>
<th># F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>147</td>
<td>6 (4%)</td>
<td>39 (37%)</td>
<td>59 (40%)</td>
<td>9 (6%)</td>
<td>10 (7%)</td>
<td>24 (16%)</td>
</tr>
<tr>
<td>2015</td>
<td>121</td>
<td>10 (9%)</td>
<td>30 (25%)</td>
<td>45 (37%)</td>
<td>9 (7%)</td>
<td>9 (7%)</td>
<td>18 (15%)</td>
</tr>
<tr>
<td>2014</td>
<td>103</td>
<td>4 (4%)</td>
<td>8 (7.5%)</td>
<td>45 (44%)</td>
<td>14 (13.5%)</td>
<td>9 (4.5%)</td>
<td>23 (22.5%)</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>For the 2013 spring semester the course was cancelled due to faculty politics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>34</td>
<td>2 (6%)</td>
<td>6 (18%)</td>
<td>14 (41%)</td>
<td>0 (0.0%)</td>
<td>6 (17.5%)</td>
<td>6 (17.5%)</td>
</tr>
<tr>
<td>2011</td>
<td>70</td>
<td>1 (2%)</td>
<td>10 (14%)</td>
<td>33 (47%)</td>
<td>9 (13%)</td>
<td>10 (14%)</td>
<td>7 (10%)</td>
</tr>
</tbody>
</table>
Other security courses at IFI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIK4220</td>
<td>Introduction to Cryptography</td>
<td>Leif Nilsen</td>
<td>Autumn</td>
</tr>
<tr>
<td>UNIK4250</td>
<td>Security in Distributed Systems</td>
<td>Nils Nordbotten</td>
<td>Spring</td>
</tr>
<tr>
<td>UNIK4270</td>
<td>Security in OS and Software</td>
<td>Audun Jøsang (Autumn)</td>
<td></td>
</tr>
<tr>
<td>UNIK4740</td>
<td>InfoSec in Industrial Sensor and Mobile Systems</td>
<td>Judith Rossebø (Autumn)</td>
<td></td>
</tr>
<tr>
<td>INF5150</td>
<td>Unassailable IT-systems</td>
<td>Ketil Stålen</td>
<td>Autumn</td>
</tr>
<tr>
<td>ITLED4230</td>
<td>Ledelse av informasjonssikkerhet</td>
<td>Audun Jøsang (Autumn)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For professionals (fee NOK 25K)</td>
<td></td>
</tr>
</tbody>
</table>

Why study information security ?

- Being an IT expert requires knowledge about IT security
 - Analogy: Building architects must have knowledge about fire safety
- Developing IT systems without considering security will lead to vulnerable IT systems
- Global IT infrastructure is vulnerable to cyber attacks
- IT experts without security skills are part of the problem
- Learn about IT security to become part of the solution!
- Information security is a political issue
 - Often seen as a cost, but saves costs in the long term
 - Often given low priority in IT industry and IT education

Certifications for IS Professionals

- Many different types of certifications available
 - vendor neutral or vendor specific
 - from non-profit organisations or commercial for-profit organisations
- Certification gives assurance of knowledge and skills,
 - needed in job functions
 - gives credibility for consultants, applying for jobs, for promotion
- Sometimes required
 - US Government IT Security jobs
- Knowledge domains reflect current topics in IT Security
 - Generally kept up-to-date

ISACA Certifications (Information Systems Audit and Control Association)

- ISACA provides certification for IT professionals
 - CISM - Certified Information Security Manager
 - CISA - Certified Information System Auditor
 - CGIT - Certified in the Governance of Enterprise IT
 - CRSIC - Certified in Risk and Information Systems Control
- CISM is the most popular ISACA security certification
- IT auditors and consultants commonly have ISACA certifications
- ISACA promotes IT governance framework COBIT
 (Control Objectives for Information and Related Technologies)
CISM: Certified Information Security Manager

- Focuses on 4 domains of IS management
 1. Information Security Governance
 2. Information Risk Management
 3. Information Security Program Development and Management
 4. Information Security Incident Management

- Official prep manual published by ISACA
 - https://www.isaca.org/bookstore/
 Price: US $115 ($85 for ISACA members)
 - https://www.isaca.org/bookstore/Pages/CISM-Exam-Resources.aspx

CISM Exam

- Exams normally twice per year worldwide
- Next exam in Oslo (and worldwide): June 2017
 - Deadline for registering: April 2017
 - Register for exam at www.isaca.org
 - Exam fee approx. US $500
 - Multiple choice exam
 - Requires 5 years professional experience
 - Yearly CISM maintenance fee approx. US $100
 - Requires 120 hours “practice time” per 3 years

(ISC)² Certifications
International Information Systems Security Certification Consortium

- (ISC)² provides certification for information security professionals
 - CISSP - Certified Information Systems Security Professional
 - ISSAP - Information Systems Security Architecture Professional
 - ISSMP - Information Systems Security Management Professional
 - ISSEP - Information Systems Security Engineering Professional
 - CAP - Certification and Accreditation Professional
 - SSCP - Systems Security Certified Practitioner
 - CSSLP - Certified Secure Software Lifecycle Professional

- CISSP is the most common IT security certification
 - Most IT Security Consultants are CISSP

CISSP Exam: Certified Information System Security Professional

- Many different books to prepare for CISSP exam
- e.g. text book used for INF3510 course
 - CISSP All-in-One Exam Guide
 Author: Shon Harris and Fernando Maymí

- € 560 fee to sit CISSP exam
- Exam through http://www.pearsonvue.com/isc2/
- Test Centre in Oslo: http://www.glasspaper.no/
 Brynsveien 12, Bryn, Oslo
- Most of the of the material presented in the INF3510 course is taken from the syllabus of the CISSP CBK (Common Body of Knowledge).
CISSP CBK (Common Body of Knowledge)
8 domains

1. **Security and Risk Management** (Security, Risk, Compliance, Law, Regulations, and Business Continuity)
2. **Asset Security** (Protecting Security of Assets)
3. **Security Engineering** (Engineering and Management of Security)
4. **Communication and Network Security** (Designing and Protecting Network Security)
5. **Identity and Access Management** (Controlling Access and Managing Identity)
6. **Security Assessment and Testing** (Designing, Performing, and Analyzing Security Testing)
7. **Security Operations** (Foundational Concepts, Investigations, Incident Management, and Disaster Recovery)
8. **Software Development Security** (Understanding, Applying, and Enforcing Software Security)

Security Surveys

- Useful for knowing the trend and current state of information security threats and attacks
 - PWC: http://www.pwc.com/gx/en/consulting-services/information-security-survey/
 - Næringslivets Sikkerhetsråd Mørketallsundersøkelsen; http://www.nsr-org.no/moerketall/
 + many others

Security Advisories

- Useful for learning about new threats and vulnerabilities
 - NorCERT: For the government sector: https://www.nsm.stat.no/
 - NorSIS: For the private sector: http://www.norsis.no/
 - KraftCERT: For the national power sector: https://www.kraftcert.no/
 - FinansCERT: For the national finance sector: http://www.finanscert.no/
 - HelseCERT: For the national health sector: https://www.nhn.no/tema/sikkerhet/HelseCERT/Sider/default.aspx
 - US CERT: http://www.cert.org/
 + many others

Academic Forum on Security

- Monthly seminar on information security
 https://wiki.uio.no/mn/ifi/AFSecurity/
- Guest expert speakers
 - **Next AFSecurity seminar:**
 - **Topic:** Post-Quantum Crypto
 - **Speaker:** Thomas Gregersen, NSM
 - **Time:** 28 February 2017, 14:00h
 - **Place:** Kristen Nygaards sal, 5th floor, OJD
 - All interested are welcome!
Information Security

Basic Concepts

What is security in general

- Security is about protecting assets from damage or harm
- Focuses on all types of assets
 - Example: your body, possessions, the environment, the nation
- Security and related concepts
 - National security (political stability)
 - Safety (health)
 - Environmental security (clean environment)
 - Information security
 - etc.

What is Information Security

- *Information* Security focuses on protecting information assets from damage or harm
- What are the assets to be protected?
 - Example: data files, software, IT equipment and infrastructure
- Covers both intentional and accidental events
 - Threat agents can be people or acts of nature
 - People can cause harm by accident or by intent
- Information Security defined:
 - The preservation of confidentiality, integrity and availability of information; in addition, other properties such as authenticity, accountability, non-repudiation and reliability can also be involved. (ISO27000 Information Security Management Systems - Overview and Vocabulary)
Scope of information security

- IS management has as goal to avoid damage and to control risk of damage to information assets
- IS management focuses on:
 - Understanding threats and vulnerabilities
 - Managing threats by reducing vulnerabilities or threat exposures
 - Detection of attacks and recovery from attacks
 - Investigate and collect evidence about incidents (forensics)

The Need for Information Security

- Why not simply solve all security problems once for all?
- Reasons why that’s impossible:
 - Rapid innovation constantly generates new technology with new vulnerabilities
 - More activities go online
 - Crime follows the money
 - Information security is a second thought when developing IT
 - New and changing threats
 - More effective and efficient attack technique and tools are being developed

- Conclusion: Information security doesn’t have a final goal, it’s a continuing process

Internet Storm Survival Time Measure

The survival time is calculated as the average time between attacks against average target IP address. http://isc.sans.org/survivalt ime.html

Malware Trend

New unique samples added to AV-Test’s malware repository (2000-2010)
Security control categories

Physical controls
- Facility protection
- Security guards
- Locks
- Monitoring
- Environmental controls
- Intrusion detection

Technical controls
- Logical access control
- Cryptographic controls
- Security devices
- User authentication
- Intrusion detection
- Forensics

Administrative controls
- Policies & standards
- Procedures & practice
- Personnel screening
- Awareness training
- Secure System Dev.
- Incident Response

Security control functional types

- Preventive controls:
 - prevent attempts to exploit vulnerabilities
 - Example: encryption of files

- Detective controls:
 - warn of attempts to exploit vulnerabilities
 - Example: Intrusion detection systems (IDS)

- Corrective controls:
 - correct errors or irregularities that have been detected.
 - Example: Restoring all applications from the last known good image to bring a corrupted system back online

- Use a combination of controls to help ensure that the organisational processes, people, and technology operate within prescribed bounds.

Controls by Information States

- Information security involves protecting information assets from harm or damage.
- Information is considered in one of three possible states:
 - During storage
 - Information storage containers
 - Electronic, physical, human
 - During transmission
 - Physical or electronic
 - During processing (use)
 - Physical or electronic

- Security controls for all information states are needed

Security Services and Properties

- A security service is a high level security property
- The traditional definition of information security is to preserve the three CIA properties for data and services:
 - Confidentiality:
 - Integrity
 - Availability:

- The CIA properties are the three main security services
Security services and controls

- Security services (aka. goals or properties)
 - implementation independent
 - supported by specific controls
- Security controls (aka. mechanisms)
 - Practical mechanisms, actions, tools or procedures that are used to provide security services

Security services:
- e.g. Confidentiality – Integrity – Availability

Security controls:
- e.g. Encryption – Firewalls – Awareness

Confidentiality

- The property that information is not made available or disclosed to unauthorized individuals, entities, or processes. (ISO 27000)
- Can be divided into:
 - Secrecy: Protecting business data
 - Privacy: Protecting personal data
 - Anonymity: Hide who is engaging in what actions
- Main threat: Information theft, unintentional disclosure
- Controls: Encryption, Access Control, Perimeter defence
 - As general controls, also include: Secure System Development, Incident Response

Integrity

- **Data Integrity:** The property that data has not been altered or destroyed in an unauthorized manner.
 (X.800: Security Architecture for Open Systems Interconnection (OSI))
- **System Integrity:** The property of accuracy and completeness (ISO 27000)
- Main threat: Data and system corruption
- Controls:
 - **Cryptographic integrity check and encryption,**
 - Access Control
 - Perimeter defence
 - Audit and verification of systems and applications
- As general controls, also include:
 Secure System Development, Incident Response

Availability

- The property of being accessible and usable upon demand by an authorized entity. (ISO 27000)
- Main threat: Denial of Service (DoS)
 - The prevention of authorized access to resources or the delaying of time critical operations
- Controls: Redundancy of resources, traffic filtering, incident recovery, international collaboration and policing
- As general controls, also include:
 Secure System Development
 Incident Response
Authenticity (Security Service)
The CIA properties are quite general security services. Other security services are often mentioned. Authentication is very important, with various types:

- **User authentication:**
 - The process of verifying a claimed identity of a (legal) user when accessing a system or an application.

- **Organisation authentication:**
 - The process of verifying a claimed identity of a (legal) organisation in an online interaction/session.

- **System authentication (peer entity authentication):**
 - The corroboration (verification) that a peer entity (system) in an association (connection, session) is the one claimed (X.800).

- **Data origin authentication (message authentication):**
 - The corroboration (verification) that the source of data received is as claimed (X.800).

User Identification and Authentication

- **Identification**
 - Who you claim to be
 - Method: (user)name, biometrics

- **User authentication**
 - Prove that you are the one you claim to be

- **Main threat:** Unauthorized access

- **Controls:**
 - Passwords,
 - Personal cryptographic tokens,
 - OTP generators, etc.
 - Biometrics
 - Id cards
 - Cryptographic security/authentication protocols

Taxonomy of Authentication

System Authentication

- **Goal**
 - Establish the correct identity of remote hosts

- **Main threat:**
 - Network intrusion
 - Masquerading attacks,
 - Replay attacks
 - (D)DOS attacks

- **Controls:**
 - Cryptographic authentication protocols based on hashing and encryption algorithms
 - Examples: TLS, VPN, IPSEC
Data Origin Authentication (Message authentication)

- **Goal:** Recipient of a message (i.e. data) can verify the correctness of claimed sender identity
 - But 3rd party may not be able to verify it
- **Main threats:**
 - False transactions
 - False messages and data
- **Controls:**
 - Encryption with shared secret key
 - MAC (Message Authentication Code)
 - Security protocols
 - Digital signature with private key
 - Electronic signature,
 - i.e. any digital evidence

Non-Repudiation (Security Service)

- **Goal:** Making sending and receiving messages undeniable through unforgible evidence.
 - Non-repudiation of origin: proof that data was sent.
 - Non-repudiation of delivery: proof that data was received.
 - NB: imprecise interpretation: Has a message been received and read just because it has been delivered to your mailbox?
- **Main threats:**
 - Sender falsely denying having sent message
 - Recipient falsely denying having received message
- **Control:** digital signature
 - Cryptographic evidence that can be confirmed by a third party
- Data origin authentication and non-repudiation are similar
 - Data origin authentication only provides proof to recipient party
 - Non-repudiation also provides proof to third parties

Accountability (Security Service)

- **Goal:** Trace action to a specific user and hold them responsible
 - Audit information must be selectively kept and protected so that actions affecting security can be traced to the responsible party (TCSEC/Orange Book)
- **Main threats:**
 - Inability to identify source of incident
 - Inability to make attacker responsible
- **Controls:**
 - Identify and authenticate users
 - Log all system events (audit)
 - Electronic signature
 - Non-repudiation based on digital signature
 - Forensics

Authorization

- **Authorization is to specify access and usage permissions for entities, roles or processes**
 - Authorization policy normally defined by humans
 - Issued by an authority within the domain/organisation
- **Authorities authorize, systems don’t**
- **Authority can be delegated**
 - Management → Sys.Admin
 - Implemented in IT systems as configuration/policy
Confusion about Authorization

- The term “authorization” is often wrongly used in the sense of “access control”
 - e.g. misleading figure on p.725 in Harris 7th ed.
 - Common in textbooks and technical specifications (RFC 2196 …)
 - Cisco AAA Server (Authentication, Authorization and Accounting)

- Wrong usage of “authorization” leads to absurd scenario:
 1. You get somebody’s password, and uses it to access account.
 2. Login screen gives warning: “Only authorized users may access this system”.
 3. You get caught and taken to the police
 4. You argue: “Text books in security state that a system authorizes the user when typing the right password, hence I was authorized because I typed the right password”.
 5. Case dismissed, you go free.

Identity and Access Management Concepts

System Owner Domain

- Registration
- Provisioning
- Authorization

Identity Provider

System resource

User

PAP: Policy Administration Point
PEP: Policy Enforcement Point
PDP: Policy Decision Point
IdP: Identity Provider