
INF3580 – Semantic Technologies – Spring 2010
Lecture 7: The Jena Inference system. OWL introduction

Audun Stolpe

9th February 2010

Department of
Informatics

University of
Oslo



Today’s Plan

1 Jena inference support

2 Using the built-in reasoners

3 Using an external reasoner

4 Simple reasoner configuration

5 Introduction to OWL

INF3580 :: Spring 2010 Lecture 7 :: 9th February 2 / 41



Jena inference support

Outline

1 Jena inference support

2 Using the built-in reasoners

3 Using an external reasoner

4 Simple reasoner configuration

5 Introduction to OWL

INF3580 :: Spring 2010 Lecture 7 :: 9th February 3 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,

RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,

OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,

Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,

External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)

DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.

(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

The Jena inference system

Designed for plug-and-play compatibility with
different reasoners.

Different reasoners implement different
axioms and rules, e.g.

Simple taxonomic reasoning,
RDFS,
OWL,
Rule languages (SWRL, Jena rules. Covered in a later lecture).

Three different types of reasoners:

Built-in reasoners,
External reasoners (Pellet, Fact++, a. o.)
DIG reasoners,

XML standard for access to description logic processing via HTTP.
(not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 4 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:

I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:

I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:

I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:

I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry

III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,

by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,

using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Reasoner factories and the reasoner registry

There is a ReasonerFactory class for each type of reasoner.

It is used to create instances of the associated reasoner.

Built-in factories are stored in a global ReasonerRegistry class.

Three principal ways to obtain a stand-alone reasoner:
I. Import and use a known factory class,

works for built-in and external reasoners alike

II. use a convenience method on the registry
III. retrieve a reasoner from the registry using the reasoners URI index

suitable for built-in reasoners

The reasoner can then be applied to a model,

to produce an InfModel,
by applying the reasoner to a plain Model,
using ModelFactory.createInfModel(reasoner, model)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 5 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Jena inference support

Contd.

One can also construct an InfModel in one go

by using convenience methods on the ModelFactory class

e.g. ModelFactory.createRDFSModel(model).

This is typically very simple,

but makes it more difficult to configure the reasoner

ModelFactory also has convience methods that return an OntModel

the OntModel class is a subclass of InfModel

has a richer API,

and can be configured with an OntModelSpec parameter

by calling ModelFactory.createOntologyModel(param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February 6 / 41



Using the built-in reasoners

Outline

1 Jena inference support

2 Using the built-in reasoners

3 Using an external reasoner

4 Simple reasoner configuration

5 Introduction to OWL

INF3580 :: Spring 2010 Lecture 7 :: 9th February 7 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and

rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

Implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 8 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,

getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,

getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,

getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Using convenience methods on ModelFactory

Creating a simple RDFSModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

createRDFSModel() returns an InfModel.

An InfModel supports access to basic inference capability, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns the derivation of stmt.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 9 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:

I. Obtain a reasoner first,
II. Construct a Model object (that is, an RDF graph)

III. pass the reasoner and the model (possibly more than one) to
ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:

I. Obtain a reasoner first,
II. Construct a Model object (that is, an RDF graph)

III. pass the reasoner and the model (possibly more than one) to
ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)

III. pass the reasoner and the model (possibly more than one) to
ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.

We may also build it in the following manner:
I. Obtain a reasoner first,

II. Construct a Model object (that is, an RDF graph)
III. pass the reasoner and the model (possibly more than one) to

ModelFactory.createInfModel

Reasoners are returned by static convenience methods on the registry:

ReasonerRegistry.getOWLMicroReasoner(),

ReasonerRegistry.getOWLMiniReasoner(),

ReasonerRegistry.getOWLReasoner(),

ReasonerRegistry.getRDFSReasoner(),

ReasonerRegistry.getRDFSSimpleReasoner(),

ReasonerRegistry.getTransitiveReasoner()

INF3580 :: Spring 2010 Lecture 7 :: 9th February 10 / 41



Using the built-in reasoners

contd.

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

This abstract two-step procedure will be the default, since;

we retain a reference to the reasoner,

that can be used for configuration.

And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February 11 / 41



Using the built-in reasoners

contd.

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

This abstract two-step procedure will be the default, since;

we retain a reference to the reasoner,

that can be used for configuration.

And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February 11 / 41



Using the built-in reasoners

contd.

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

This abstract two-step procedure will be the default, since;

we retain a reference to the reasoner,

that can be used for configuration.

And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February 11 / 41



Using the built-in reasoners

contd.

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

This abstract two-step procedure will be the default, since;

we retain a reference to the reasoner,

that can be used for configuration.

And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February 11 / 41



Using the built-in reasoners

contd.

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

This abstract two-step procedure will be the default, since;

we retain a reference to the reasoner,

that can be used for configuration.

And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February 11 / 41



Using the built-in reasoners

contd.

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);
Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

This abstract two-step procedure will be the default, since;

we retain a reference to the reasoner,

that can be used for configuration.

And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February 11 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,

and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,

for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)
where param is a configuration parameter,

of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)
where param is a configuration parameter,
of type Resource,

but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)
where param is a configuration parameter,
of type Resource,
but it doesn’t do much,

and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Accessing all built-in reasoners

There are other built-in reasoners than those
that are accessible through

the convenience methods on ModelFactory,
and on ReasonerRegistry,
for instance the GenericRuleReasoner.

All reasoners can be looked up in the registry.

The ReasonerRegistry stores factory instances indexed by URIs.

Reasoners can be retrieved using these indexes,

by registry.create(reasonerURI, param)
where param is a configuration parameter,
of type Resource,
but it doesn’t do much,
and is usually replaced with null.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 12 / 41



Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:

ReasonerRegistry reg = ReasonerRegistry.theRegistry();

Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?reasoner ?desc WHERE {

?reasoner rdf:type jr:ReasonerClass .
?reasoner jr:description ?desc .

}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 13 / 41



Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:

ReasonerRegistry reg = ReasonerRegistry.theRegistry();

Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?reasoner ?desc WHERE {

?reasoner rdf:type jr:ReasonerClass .
?reasoner jr:description ?desc .

}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 13 / 41



Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:

ReasonerRegistry reg = ReasonerRegistry.theRegistry();

Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?reasoner ?desc WHERE {

?reasoner rdf:type jr:ReasonerClass .
?reasoner jr:description ?desc .

}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 13 / 41



Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:

ReasonerRegistry reg = ReasonerRegistry.theRegistry();

Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?reasoner ?desc WHERE {

?reasoner rdf:type jr:ReasonerClass .
?reasoner jr:description ?desc .

}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 13 / 41



Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:

ReasonerRegistry reg = ReasonerRegistry.theRegistry();

Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?reasoner ?desc WHERE {

?reasoner rdf:type jr:ReasonerClass .
?reasoner jr:description ?desc .

}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 13 / 41



Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:

ReasonerRegistry reg = ReasonerRegistry.theRegistry();

Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?reasoner ?desc WHERE {

?reasoner rdf:type jr:ReasonerClass .
?reasoner jr:description ?desc .

}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 13 / 41



Using the built-in reasoners

InfModels by lookup

Reasoners and descriptions

reasoner desc

jr:DIGReasoner ”Adapter for external (i.e. non-Jena) DIG reasoner”
jr:GenericRuleReasoner ”Generic rule reasoner, configurable”
jr:OWLFBRuleReasoner ”Experimental OWL reasoner. Can separate tbox ...”
jr:OWLMiniFBRuleReasoner ”Experimental mini OWL reasoner. Can separate tbox ..”
jr:OWLMicroFBRuleReasoner ”Experimental mini OWL reasoner. Can separate ..”
jr:TransitiveReasoner ”Provides reflexive-transitive closure of subClassOf ...”
jr:RDFSExptRuleReasoner ”Complete RDFS implementation supporting ...”
jr:DAMLMicroReasonerFactory ”RDFS rule set with small extensions to support DAML”

Retrieveing a reasoner by URI

ReasonerRegistry reg = ReasonerRegistry.theRegistry();
Reasoner r = reg.create("jr:OWLFBRuleReasoner", null);

InfModel inf = ModelFactory.createInfModel(r, sche, dat);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 14 / 41



Using the built-in reasoners

InfModels by lookup

Reasoners and descriptions

reasoner desc

jr:DIGReasoner ”Adapter for external (i.e. non-Jena) DIG reasoner”
jr:GenericRuleReasoner ”Generic rule reasoner, configurable”
jr:OWLFBRuleReasoner ”Experimental OWL reasoner. Can separate tbox ...”
jr:OWLMiniFBRuleReasoner ”Experimental mini OWL reasoner. Can separate tbox ..”
jr:OWLMicroFBRuleReasoner ”Experimental mini OWL reasoner. Can separate ..”
jr:TransitiveReasoner ”Provides reflexive-transitive closure of subClassOf ...”
jr:RDFSExptRuleReasoner ”Complete RDFS implementation supporting ...”
jr:DAMLMicroReasonerFactory ”RDFS rule set with small extensions to support DAML”

Retrieveing a reasoner by URI

ReasonerRegistry reg = ReasonerRegistry.theRegistry();
Reasoner r = reg.create("jr:OWLFBRuleReasoner", null);

InfModel inf = ModelFactory.createInfModel(r, sche, dat);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 14 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,

createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,

createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

Richer models with OntModel

InfModels do not enhace the Model API as such,

they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

Provides a better view of a Model known to contain ontology data.

It supplies methods such as

createCardinalityRestriction,
createSymmetricProperty,
createRestriction

Correspond to language constructs in OWL.

Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 15 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,

language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,

and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an API.

However, it may obviously be hooked up with a reasoner.

Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,

rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

the storage scheme,
language profile,
and the reasoner

It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 16 / 41



Using the built-in reasoners

Some specs from OntModelSpec

The class OntModelSpec contains static descriptive fields:

OWL DL MEM RDFS INF: A specification for OWL DL models that are
stored in memory and use the RDFS inferencer for additional
entailments.

OWL LITE MEM: A specification for OWL Lite models that are stored in
memory and do no entailment additional reasoning.

OWL MEM MICRO RULE INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL DL MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February 17 / 41



Using the built-in reasoners

Some specs from OntModelSpec

The class OntModelSpec contains static descriptive fields:

OWL DL MEM RDFS INF: A specification for OWL DL models that are
stored in memory and use the RDFS inferencer for additional
entailments.

OWL LITE MEM: A specification for OWL Lite models that are stored in
memory and do no entailment additional reasoning.

OWL MEM MICRO RULE INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL DL MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February 17 / 41



Using the built-in reasoners

Some specs from OntModelSpec

The class OntModelSpec contains static descriptive fields:

OWL DL MEM RDFS INF: A specification for OWL DL models that are
stored in memory and use the RDFS inferencer for additional
entailments.

OWL LITE MEM: A specification for OWL Lite models that are stored in
memory and do no entailment additional reasoning.

OWL MEM MICRO RULE INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL DL MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February 17 / 41



Using the built-in reasoners

Some specs from OntModelSpec

The class OntModelSpec contains static descriptive fields:

OWL DL MEM RDFS INF: A specification for OWL DL models that are
stored in memory and use the RDFS inferencer for additional
entailments.

OWL LITE MEM: A specification for OWL Lite models that are stored in
memory and do no entailment additional reasoning.

OWL MEM MICRO RULE INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL DL MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February 17 / 41



Using the built-in reasoners

Some specs from OntModelSpec

The class OntModelSpec contains static descriptive fields:

OWL DL MEM RDFS INF: A specification for OWL DL models that are
stored in memory and use the RDFS inferencer for additional
entailments.

OWL LITE MEM: A specification for OWL Lite models that are stored in
memory and do no entailment additional reasoning.

OWL MEM MICRO RULE INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL DL MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February 17 / 41



Using the built-in reasoners

Some specs from OntModelSpec

The class OntModelSpec contains static descriptive fields:

OWL DL MEM RDFS INF: A specification for OWL DL models that are
stored in memory and use the RDFS inferencer for additional
entailments.

OWL LITE MEM: A specification for OWL Lite models that are stored in
memory and do no entailment additional reasoning.

OWL MEM MICRO RULE INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL DL MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February 17 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),

then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),

but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,

parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.

Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using the built-in reasoners

Creating OntModels with ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Note:

Jena currently lags behind a bit, as there is no spec. for OWL 2.

or any of its profiles

Does not mean that one cannot use OWL 2 ontologies with Jena.

If the reasoner handles OWL 2 (as e.g. Pellet does),
then Jena can reason with it (that is, with OWL 2 ontologies),
but there may not be support in the API for all language constructs,
parts of the ontology may not be directly accessible from the code.
Likely to change with new releases of Jena.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 18 / 41



Using an external reasoner

Outline

1 Jena inference support

2 Using the built-in reasoners

3 Using an external reasoner

4 Simple reasoner configuration

5 Introduction to OWL

INF3580 :: Spring 2010 Lecture 7 :: 9th February 19 / 41



Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

One goes directly to the FactoryClass,

calls the static theInstance() to get
the factory instance,

calls the instance’s create() method,

and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 20 / 41



Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

One goes directly to the FactoryClass,

calls the static theInstance() to get
the factory instance,

calls the instance’s create() method,

and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 20 / 41



Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

One goes directly to the FactoryClass,

calls the static theInstance() to get
the factory instance,

calls the instance’s create() method,

and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 20 / 41



Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

One goes directly to the FactoryClass,

calls the static theInstance() to get
the factory instance,

calls the instance’s create() method,

and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 20 / 41



Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

One goes directly to the FactoryClass,

calls the static theInstance() to get
the factory instance,

calls the instance’s create() method,

and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 20 / 41



Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

One goes directly to the FactoryClass,

calls the static theInstance() to get
the factory instance,

calls the instance’s create() method,

and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 20 / 41



Using an external reasoner

contd.

In the former case, things are very simple:

Using Pellet with an InfModel

Reasoner reas = PelletReasonerFactory.theInstance().create();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

The latter case requires a little more tweaking:

Using Pellet with an OntModel

Reasoner r = PelletReasonerFactory.theInstance().create();
InfModel mod = ModelFactory.createInfModel(r, s, d);
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel ont = ModelFactory.createOntologyModel(spec, mod);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 21 / 41



Using an external reasoner

contd.

In the former case, things are very simple:

Using Pellet with an InfModel

Reasoner reas = PelletReasonerFactory.theInstance().create();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

The latter case requires a little more tweaking:

Using Pellet with an OntModel

Reasoner r = PelletReasonerFactory.theInstance().create();
InfModel mod = ModelFactory.createInfModel(r, s, d);
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel ont = ModelFactory.createOntologyModel(spec, mod);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 21 / 41



Using an external reasoner

contd.

In the former case, things are very simple:

Using Pellet with an InfModel

Reasoner reas = PelletReasonerFactory.theInstance().create();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

The latter case requires a little more tweaking:

Using Pellet with an OntModel

Reasoner r = PelletReasonerFactory.theInstance().create();
InfModel mod = ModelFactory.createInfModel(r, s, d);
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel ont = ModelFactory.createOntologyModel(spec, mod);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 21 / 41



Using an external reasoner

contd.

In the former case, things are very simple:

Using Pellet with an InfModel

Reasoner reas = PelletReasonerFactory.theInstance().create();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

The latter case requires a little more tweaking:

Using Pellet with an OntModel

Reasoner r = PelletReasonerFactory.theInstance().create();
InfModel mod = ModelFactory.createInfModel(r, s, d);
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel ont = ModelFactory.createOntologyModel(spec, mod);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 21 / 41



Simple reasoner configuration

Outline

1 Jena inference support

2 Using the built-in reasoners

3 Using an external reasoner

4 Simple reasoner configuration

5 Introduction to OWL

INF3580 :: Spring 2010 Lecture 7 :: 9th February 22 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),

from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),

or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Configuration in general

Reasoners can be configured in many ways:

Some can be configured to reason in different directions, that is

from conclusions to premises (so-called backwards chaining),
from premises to conclusion (so-called forwards chaining),
or a mix (so-called hybrid reasoning)

or to turn transitivity off for properties such as subClassOf,

or to log derivations.

In every case you will need a reference to the reasoner, whence

it is no longer convenient to use the convenience methods in
ModelFactory.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 23 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

Specializing the reasoner

The simplest way to configure a reasoner is to specialize it:

that is, to bind it to a particular ontology.

This is suitable for situations where,

you want to apply the same schema to several data sets,

without redoing too many intermediate deductions

Binding Pellet to schema

Reasoner r = PelletReasonerFactory.theInstance().create();
Reasoner custom = r.bindSchema(schema);

InfModel inf = ModelFactory.createInfModel(custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February 24 / 41



Simple reasoner configuration

A very simple taxonomy

Consider again the RDFS ontology given by:

ex:KillerWhale a rdfs:Class .

ex:Mammal a rdfs:Class .

ex:Vertebrate a rdfs:Class .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

And suppose we assert:

ex:Keiko a ex:KillerWhale .

Tracing the derivations could be useful for

debugging,

automatic explanation.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 25 / 41



Simple reasoner configuration

Logging derivations

Telling the reasoner to log derivations

Reasoner r = ReasonerRegistry.getRDFSReasoner();

r.setDerivationLogging(true);

Printing derivations

PrintWriter out = new PrintWriter(System.out);
StmtIterator it = inf.listStatements();

while(it.hasNext()){
Statement stat = (Statement) it.next();
for(Iterator id = inf.getDerivation(stat);id.hasNext();){
Derivation deriv = (Derivation) id.next();
deriv.printTrace(out, true);

}
}

INF3580 :: Spring 2010 Lecture 7 :: 9th February 26 / 41



Simple reasoner configuration

A sample trace

Rule rdfs9-alt concluded (ex:Keiko rdf:type ex:Vertebrate) <-
Fact (ex:KillerWhale rdfs:subClassOf ex:Vertebrate)
Rule rdfs9-alt concluded (ex:Keiko rdf:type ex:KillerWhale) <-

Fact (ex:KillerWhale rdfs:subClassOf ex:KillerWhale)
Known (ex:Keiko rdf:type ex:KillerWhale) - already shown

INF3580 :: Spring 2010 Lecture 7 :: 9th February 27 / 41



Introduction to OWL

Outline

1 Jena inference support

2 Using the built-in reasoners

3 Using an external reasoner

4 Simple reasoner configuration

5 Introduction to OWL

INF3580 :: Spring 2010 Lecture 7 :: 9th February 28 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C reccomendation in 2004.

Enables boolean reasoning over classes and relationships.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

The OWL family of languages are based on Description Logics.

DLs have well-understood and attractive computational properties.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 29 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.

OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.

OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.

Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in mediacl informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 30 / 41



Introduction to OWL

The ALEC fragment of OWL

ALEC In DL-notation

C , D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (atomic negation)
C u D | (intersection)
∀R.C | (value restriction)
∃R.C | (existential restriction)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 31 / 41



Introduction to OWL

Semantics

ALEC in DL-notation

>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(∀R.C )I = {a ∈ ∆I | ∀b(a, b) ∈ RI → b ∈ CI}
(∃R.C )I = {a ∈ ∆I | ∃b(a, b) ∈ RI ∧ b ∈ CI}

OWL ontologies in DL-notation

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas
Genetic Fibrosis v Genetic Disorder

Fibrosis u ∃locatedIn.Pancreas v Genetic Fibrosis

INF3580 :: Spring 2010 Lecture 7 :: 9th February 32 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,
C t D to logical disjunction, and
¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,

C t D to logical disjunction, and
¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,
C t D to logical disjunction, and

¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,
C t D to logical disjunction, and
¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,
C t D to logical disjunction, and
¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,
C t D to logical disjunction, and
¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Some differences from RDFS

1 Complex classes can be expressed:

C u D corresponds to logical conjunction,
C t D to logical disjunction, and
¬C to logical negation

2 Unlike RDFS, OWL is therefore a boolean language.

That is, it has a propositional logic as a fragment.

3 Full propositional negation facilitates consistency checking.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 33 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,

and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,

then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions

Allow us to describe classes in terms of each other.

Cystic Fibrosis ≡ Fibrosis u ∃locatedIn.Pancreas

or, more mundanely

ProudMother ≡Woman u ∃hasChild .Lawyer

hasChild.Lawyer = the set of things that have at least one lawyer
child.

If a thing has a lawyer child,
and that thing is a woman,
then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February 34 / 41



Introduction to OWL

Existential restrictions in Turtle syntax

Lawyer children

[a owl:Restriction;

owl:onProperty :hasChild:

owl:somValuesFrom :Lawyer] .

owl:Restriction signals a class description,

owl:somValuesFrom; an existential restriction on a property,

owl:onProperty gives the property

The description is a blank node, since it has no name.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 35 / 41



Introduction to OWL

Existential restrictions in Turtle syntax

Lawyer children

[a owl:Restriction;

owl:onProperty :hasChild:

owl:somValuesFrom :Lawyer] .

owl:Restriction signals a class description,

owl:somValuesFrom; an existential restriction on a property,

owl:onProperty gives the property

The description is a blank node, since it has no name.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 35 / 41



Introduction to OWL

Existential restrictions in Turtle syntax

Lawyer children

[a owl:Restriction;

owl:onProperty :hasChild:

owl:somValuesFrom :Lawyer] .

owl:Restriction signals a class description,

owl:somValuesFrom; an existential restriction on a property,

owl:onProperty gives the property

The description is a blank node, since it has no name.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 35 / 41



Introduction to OWL

Existential restrictions in Turtle syntax

Lawyer children

[a owl:Restriction;

owl:onProperty :hasChild:

owl:somValuesFrom :Lawyer] .

owl:Restriction signals a class description,

owl:somValuesFrom; an existential restriction on a property,

owl:onProperty gives the property

The description is a blank node, since it has no name.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 35 / 41



Introduction to OWL

Existential restrictions illustrated

Figure: Existential restrictions. From Julian Seidenberg ”Web Ontology
Segmentation: Extraction, Transformation, Evaluation”

INF3580 :: Spring 2010 Lecture 7 :: 9th February 36 / 41



Introduction to OWL

Horisontal relations between classes

Figure: Existential restrictions relate classes (from Julian Seidenberg ”Web
Ontology Segmentation: Extraction, Transformation, Evaluation”)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 37 / 41



Introduction to OWL

Returning to an example

Suppose we assert:

1. :OsloPhilharmonic :conductor :Saraste .

And we say that

2. Orchestra ≡ ∃conductor.> u ∃hasInstrument.>

Then from [1.] we may infer that

3. :OsloPhilharmonic a :Orchestra .

4. :OsloPhilharmonic :hasInstrument :x .

INF3580 :: Spring 2010 Lecture 7 :: 9th February 38 / 41



Introduction to OWL

Returning to an example

Suppose we assert:

1. :OsloPhilharmonic :conductor :Saraste .

And we say that

2. Orchestra ≡ ∃conductor.> u ∃hasInstrument.>

Then from [1.] we may infer that

3. :OsloPhilharmonic a :Orchestra .

4. :OsloPhilharmonic :hasInstrument :x .

INF3580 :: Spring 2010 Lecture 7 :: 9th February 38 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra

But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>

∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that

:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that
:MusicaAntiqua :conductor :Savall . (not actually the case)

:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that
:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that
:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that

:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

A comparison with rdfs:domain

Recall that ex:conductor rdfs:domain ex:Orchestra says that
only orchestras have conductors.

We can express this with existential restrictions:

∃conductor.> ≡ Orchestra
But we can also express a number finer relationships:

Choir v ∃conductor.>
∃conductor.Cantor v ChurchEnsemble

each time we are relating classes to each other,

weaving together a fabric of formalized knowledge,

which stores inferences like a battery stores energy.

If we add that
:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)

then we know that
:MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February 39 / 41



Introduction to OWL

Existential restrictions in OntModels

Implementing the example

OntModel m = ModelFactory.createOntologyModel(OntModelSpec.OWL DL MEM);

OntClass c = m.createClass("ex:Cantor");

OntClass e = m.createClass("ex:ChurchEnsemble");

ObjectProperty cond = m.createObjectProperty("ex:conductor");

// null denotes the URI in an anonymous restriction

SomeValuesFromRestriction r = m.createSomeValuesFromRestriction(null, cond, c);

Statement stmt = model.createStatement(r,OWL.subClassOf, e);

model.add(stmt);

More about this later

INF3580 :: Spring 2010 Lecture 7 :: 9th February 40 / 41



Introduction to OWL

Supplementary reading

The Jena ontology API:

Jena Inference Engine user manual:

Using a DIG Description Logic reasoner with Jena:

All available from the Jena website.

INF3580 :: Spring 2010 Lecture 7 :: 9th February 41 / 41


	Jena inference support
	Using the built-in reasoners
	Using an external reasoner
	Simple reasoner configuration
	Introduction to OWL

