Mathematical foundations

Read the relevant lecure slides.

1 Sets

1.1 Exercise

What is the difference between \emptyset and $\{\emptyset\}$?

1.1.1 Solution

\emptyset is the empty set, i.e, the set with no elements. $\{\emptyset\}$ is the set containing one element, the empty set.

1.2 Exercise

In this exercise we will use the following sets:

- $A=\{a, b, c, d\}$
- $B=\{d, f, e, r, k\}$
- $C=\{r, e, m\}$
- $D=\{q, l\}$
- $E=\{ \}$
- Δ is the universal set.

What is the cardinality of each of these sets?
List all the elements in the following sets:

1. $A \cup B$.
2. $A \cup(B \cap C)$.
3. $(A \cap B) \cup(C \cap A)$.
4. $B \backslash C$.
5. $C \backslash B$.
6. $D \cap \bar{E}$.
7. $D \cup \bar{E}$.

1.2.1 Solution

Cardinalities:

1. $|A|=4$.
2. $|B|=5$
3. $|C|=3$.
4. $|D|=2$.
5. $|E|=|\emptyset|=0$.

Sets:

1. $A \cup B=\{a, b, c, d, e, f, k, r\}$
2. $A \cup(B \cap C)=A \cup\{e, r\}=\{a, b, c, d, e, r\}$.
3. $(A \cap B) \cup(C \cap A)=\{d\} \cup \emptyset=\{d\}$
4. $B \backslash C=\{d, f, k\}$.
5. $C \backslash B=\{m\}$.
6. $D \cap \bar{E}=D \cap \Delta=D=\{q, l\}$.
7. $D \cup \bar{E}=D \cup \Delta=\Delta$.

1.3 Exercise

Let F and G be two arbitrary sets and Δ the universal set. Draw Venn diagrams containing the sets F, G and Δ and shade the area representing the following sets:

1. \bar{F}.
2. \bar{G}.
3. $\overline{(F \cup G)}$.
4. $\bar{F} \cap \bar{G}$.
5. $\overline{(F \cap G)}$.
6. $\bar{F} \cup \bar{G}$.

1.3.1 Solution

1. Exercise 1.

2. Exercise 2.

3. Exercise 3 and 4.

4. Exercise 5 and 6.

1.4 Exercise

Create three sets A, B and C such that the following hold:

- The union of A and B is $\{1,2,3,4\}$.
- The intersection of A and C is $\{3\}$.
- The union of B and C is $\{3,4,5,6\}$.
- The intersection of B and C is $\{4\}$.

1.4.1 Solution

- $A=\{1,2,3\}$
- $B=\{4\}$
- $C=\{3,4,5,6\}$

1.5 Exercise

Let $A=\{1,2,\{1,2\},\{1,3\},\{1,2,3\}\}$ and decide if the following hold

- $1 \in A$
- $2 \in A$
- $3 \in A$
- $\emptyset \in A$
- $\{1\} \in A$
- $\{1,3\} \in A$
- $\{1,2,\{1,2\}\} \in A$
- $\emptyset \subseteq A$
- $\{1\} \subseteq A$
- $\{1,3\} \subseteq A$
- $\{1,2,\{1,2\}\} \subseteq A$
- $\{\{1,2,3\}\} \in A$

1.5.1 Solution

- $1 \in A$ true
- $2 \in A$ true
- $3 \in A$ false
- $\emptyset \in A$ false
- $\{1\} \in A$ false
- $\{1,3\} \in A$ true
- $\{1,2,\{1,2\}\} \in A$ false
- $\emptyset \subseteq A$ true
- $\{1\} \subseteq A$ true
- $\{1,3\} \subseteq A$ false
- $\{1,2,\{1,2\}\} \subseteq A$ true
- $\{\{1,2,3\}\} \in A$ false

2 Relations

2.1 Exercise

Let A be the set $A=\{a, b, c, d, e, f\}$. Create non-empty relations R_{i} on A such that the conditions below hold.

1. $R_{1}=A \times A$
2. R_{2} is reflexive.
3. R_{3} is symmetric.
4. R_{4} is transitive.
5. R_{5} is irreflexive.

2.1.1 Solution

There is only one solution to R_{1} and R_{2}. There are many solutions to R_{3}, R_{4} and R_{5}.

```
\(R_{1}=\{\)
    \(\langle a, a\rangle,\langle a, b\rangle,\langle a, c\rangle,\langle a, d\rangle,\langle a, e\rangle,\langle a, f\rangle\),
    \(\langle b, a\rangle,\langle b, b\rangle,\langle b, c\rangle,\langle b, d\rangle,\langle b, e\rangle,\langle b, f\rangle\),
    \(\langle c, a\rangle,\langle c, b\rangle,\langle c, c\rangle,\langle c, d\rangle,\langle c, e\rangle,\langle c, f\rangle\),
    \(\langle d, a\rangle,\langle d, b\rangle,\langle d, c\rangle,\langle d, d\rangle,\langle d, e\rangle,\langle d, f\rangle\),
    \(\langle e, a\rangle,\langle e, b\rangle,\langle e, c\rangle,\langle e, d\rangle,\langle e, e\rangle,\langle e, f\rangle\),
    \(\langle f, a\rangle,\langle f, b\rangle,\langle f, c\rangle,\langle f, d\rangle,\langle f, e\rangle,\langle f, f\rangle\)
    \}
\(R_{2}=\{\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle d, d\rangle,\langle e, e\rangle,\langle f, f\rangle\}\)
\(R_{3}=\{\langle a, a\rangle,\langle a, b\rangle,\langle b, a\rangle,\langle d, c\rangle,\langle c, d\rangle,\langle f, f\rangle\}\)
\(R_{4}=\{\langle a, a\rangle,\langle a, b\rangle,\langle b, a\rangle,\langle d, c\rangle,\langle c, d\rangle,\langle f, f\rangle,\langle b, b\rangle,\langle d, d\rangle,\langle c, c\rangle\}\)
\(R_{5}=\{\langle a, b\rangle,\langle c, d\rangle\}\)
```


2.2 Exercise

Assume the normal intended interpretation. Which of the following relations are reflexive, transitive and/or symmetric?

- hasSister
- hasSibling
- hasFather
- hasParent
- hasAge
- hasSpouse
- likes

2.2.1 Solution

This is one normal interpretation:

- hasSister: transitive
- hasSibling: symmetric and transitive
- hasFather:
- hasParent:
- hasAge:
- hasSpouse: symmetric (transitive?)
- likes: symmetric, reflexive?

3 Propositional logic

3.1 Exercise

Let ϕ be the propositional formula $(P \wedge Q) \vee R \rightarrow S \wedge Q$.

- Create an interpretation \mathcal{I}_{1} such that $\mathcal{I}_{1} \models \phi$.
- Create an interpretation \mathcal{I}_{2} such that $\mathcal{I}_{2} \not \models \phi$.

3.1.1 Solution

- $I_{1}=\{R, S, Q\}$
- $I_{2}=\{R\}$

3.2 Exercise

- Find the truth table to the formula $(P \rightarrow Q) \rightarrow P$
- Find the truth table to the formula $(P \rightarrow Q) \vee(Q \rightarrow P)$
- What is there to note about the two formulae?

3.2.1 Solution

P	Q	$(P \rightarrow Q)$	\rightarrow	P
T	T	T	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	F	F

The formula is equivalent to P.

P	Q	$(P \rightarrow Q)$	\vee	$(Q \rightarrow P)$
T	T	T	T	T
T	F	F	T	T
F	T	T	T	F
F	F	T	T	T

The formula is always true, it is a tautology.

3.3 Exercise

Decide the following entailment questions. If the answer is yes, then produce a proof, e.g., a truth table, which shows why the answer is yes. If the answer is no, then produce a countermodel, i.e., an interpretation which makes the first formula true and the second false.

- Does $P \vee Q$ entail Q ?
- Does $P \wedge Q$ entail $P \vee Q$?
- Does $P \rightarrow(P \rightarrow Q)$ entail Q ?
- Does $P \wedge \neg P$ entail Q ?

3.3.1 Solution

- Does $P \vee Q$ entail Q ? No.
- Does $P \wedge Q$ entail $P \vee Q$? Yes.
- Does $P \rightarrow(P \rightarrow Q)$ entail Q ? No.
- Does $P \wedge \neg P$ entail Q ? Yes.

