
OWL

Read

• Semantic Web Programming: chapter 4, 5

• Foundations of Semantic Web Technologies: chapter 4, 5.

Supplementary reading:

• OWL Pizzas: Practical Experience of Teaching OWL-DL:Common Errors & Common
Patterns1

Now we will take our family ontology one step further by adding more semantics using OWL.
First, for a soft start and to get into Protégé, ontology editing and OWL, we will start by looking
at an existing tutorial ontology, the pizza ontology. Parts of this exercise will be a revisit of first
week’s exercise.

1 The Pizza ontology

The pizza ontology is a well-known ontology in the semantic web community. It is developed
for educational purposes by the University of Manchester, which is a leading university in the
development of semantic technologies.

The pizza ontology and a tutorial that uses it is found at

• http://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes

• http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/

The tutorial is primarily for learning how to use Protégé 4. Use it to get help on how to use
Protégé in the coming exercises.

1.1 Exercise

Open the pizza ontology2 in Protégé. Take some time to browse the class hierarchy, the
property hierarchies and the individuals and note how the ontology describes the domain of
pizzas.

1.2 Exercise

Find Margherita and see how it is defined as a pizza with only cheese and tomato topping.
Look at the definition of VegetarianPizza. Is a Margherita pizza a vegetarian pizza? Why / why

1http://www.cs.man.ac.uk/~rector/papers/common_errors_ekaw_2004.pdf
2http://protege.stanford.edu/ontologies/pizza/pizza.owl

1

http://www.cs.man.ac.uk/~rector/papers/common_errors_ekaw_2004.pdf
http://www.cs.man.ac.uk/~rector/papers/common_errors_ekaw_2004.pdf
http://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://protege.stanford.edu/ontologies/pizza/pizza.owl
http://www.cs.man.ac.uk/~rector/papers/common_errors_ekaw_2004.pdf
http://protege.stanford.edu/ontologies/pizza/pizza.owl

not?

1.3 Exercise

Find hasIngredient. What is the domain and range of this property? What are the subprop-
erties of hasIngredient? What is the inverse property of hasIngredient? What property
characteristics does hasIngredient have?

1.4 Exercise

Classify the ontology by choosing a reasoner and then "classify" in the reasoner menu. In
the "Inferred class hierarchy" two classes show up as subclasses of owl:Nothing. Answer the
following questions:

• In general, what is the difference between the asserted class hierarchy and the inferred
class hierarchy?

• What does it mean for a class to be a subclass of owl:Nothing?

• Explain why these two classes appear as subclasses of owl:Nothing.

• Find Margherita in the inferred class hierarchy and see which classes are inferred as
superclasses of Margherita.

1.5 Exercise

Add a new class Grandiosa as a subclass of NamedPizza. Define "Grandiosa" as something
which

• hasTopping some HamTopping,

• hasTopping some TomatoTopping and

• hasTopping some CheeseTopping.

Classify the ontology. What superclasses are inferred as superclass of Grandiosa? Explain why.

1.6 Exercise

State in the ontology that a Grandiosa pizza comes from Norway, and that Norway is different
from the other countries already present in the pizza ontology. Apply reasoning and explain
the results.

2 Family relations in OWL

So far we have only been allowed to use RDFS vocabulary to describe family relations. Now
we will extend our description using OWL constructs. OWL is more expressive than RDFS and
allows us to express many more restrictions on properties and class membership than RDFS
does.

2/12

In this exercise we will only use OWL (1) DL vocabulary (and not OWL 2, which will be
next week’s exercises). This language is explained in W3C’s OWL Web Ontology Language
Reference3 , which may be a valuable resource for these exercises. OWL Web Ontology
Language Overview4 contains a list of the constructs available in RDFS and the different
dialects of OWL 1: OWL lite, OWL DL and OWL Full. See also W3C’s "portal" on OWL5 .

You may use Protégé as your editor, but you are also welcome to use a plain text editor to
the exercises. Note that there are different OWL languages and that different editors have
different tastes. If you are using Protégé as editor, consult the Protégé pizza tutorial. If your
using a plain text editor, use the OWL validator6 and try also regularly to open your file in
Protégé. If you have problems using Protégé, consult the Protégé OWL Tutorial7 .

The OWL vocabulary we will use is listed below. The list is a slightly compacted version of the
one found on OWL Web Ontology Language Overview8 . Almost all items in the list will be put
to use in these exercises.

• RDFS Features: Class, rdfs:subClassOf, rdf:Property, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, Individual

• Header Information: Ontology, imports

• Annotation Properties, rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,
AnnotationProperty, OntologyProperty

• Class Axioms: oneOf, dataRange, disjointWith, unionOf, complementOf, intersectionOf

• (In)Equality: equivalentClass, equivalentProperty, sameAs, differentFrom, AllDifferent,
distinctMembers

• Property Characteristics: ObjectProperty, DatatypeProperty, inverseOf, TransitiveProperty,
SymmetricProperty, FunctionalProperty, InverseFunctionalProperty

• Property Restrictions: Restriction, onProperty, allValuesFrom, someValuesFrom,
minCardinality, maxCardinality, cardinality, hasValue

• Datatypes: XSD datatypes

For each of the modelling exercises below express the exercise text as a set of description
logic (DL) axioms.

2.1 Exercise

Make a new ontology file. Give it the namespace

http://www.ifi.uio.no/INF3580/v16/family.owl#

Import the family RDFS file you wrote in last week’s exercise.

3http://www.w3.org/TR/owl-ref/
4http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
5http://www.w3.org/2004/OWL/
6http://www.mygrid.org.uk/OWL/Validator
7http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
8http://www.w3.org/TR/2004/REC-owl-features-20040210/

3/12

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
http://www.w3.org/2004/OWL/
http://www.mygrid.org.uk/OWL/Validator
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
http://www.w3.org/2004/OWL/
http://www.mygrid.org.uk/OWL/Validator
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

2.1.1 Tip

Note, as mentioned in an exercise in last week’s exercises, not all ontology editors and
reasoners interprets manages to handle RDFS as OWL, so you might want to convert your
family RDFS file to OWL. Changing all instances of rdfs:Class to owl:Class and instances
of rdf:Propery to either owl:ObjectProperty or owl:DatatypeProperty should take care of
most convertion problems.

2.1.2 Solution

I will be using a plain text editor to write the OWL file, so it is easily included it in this
document.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
6 @prefix fam: <http://www.ifi.uio.no/INF3580/v13/family#> .
7 @prefix : <http://www.ifi.uio.no/INF3580/v13/family.owl#> .
8 @base <http://www.ifi.uio.no/INF3580/v13/family.owl> .
9

10 <http://www.ifi.uio.no/INF3580/v13/family.owl> rdf:type owl:Ontology ;
11 owl:imports <http://www.ifi.uio.no/INF3580/v13/family> .

2.2 Exercise

State that a person has at least one father and one mother.

2.2.1 Tip 1

The exercises are formulated in normal language on purpose. It is up to you to decide how this
is best expressed in OWL.

2.2.2 Tip 2

My solution (yours may be different) as a DL axiom:

Person v ∃hasFather.Person u ∃hasMother.Person

2.2.3 Solution

To state this in Protégé add an anonymous superclass to Person with the expression

hasFather some Person
and hasMother some Person

With this we have stated that for every instance of the class Person there must be a hasFather
property instance to an instance of Person and a hasMother property instance to a instance of
Person. In N3 the same statements look like:

4/12

12 foaf:Person rdfs:subClassOf [
13 owl:intersectionOf (
14 [rdf:type owl:Restriction ;
15 owl:onProperty fam:hasFather ;
16 owl:someValuesFrom foaf:Person
17]
18 [rdf:type owl:Restriction ;
19 owl:onProperty fam:hasMother ;
20 owl:someValuesFrom foaf:Person
21]
22)] .

Note that there may be many ways to express the same statement. The statement can also been
expressed by using minimum cardinality of 1 for Person on both of hasFather and hasMother,
in a similar fashion as the solution above. In Protégé

hasFather min 1 Thing
hasMother min 1 Thing

2.3 Exercise

State that a person can only have one mother and only one father.

2.3.1 Solution

To state this I have used owl:FunctionalProperty and stated that both :hasFather and
:hasMother are functional properties. Quoting FunctionalProperty-def9 :

A functional property is a property that can have only one (unique) value y for each
instance x, i.e. there cannot be two distinct values y1 and y2 such that the pairs
(x,y1) and (x,y2) are both instances of this property.

This works since the domain of both properties is Person and the range for :hasFather and
:hasMother are :Father and :Mother respectively.

In DL it looks like this

≥2hasFather.> v ⊥ ≥2hasMother.> v ⊥

which can be translated to "nothing has to hasFather/hasMother relations".

In Protégé it is expressed by ticking the "Functional" box for each of the properties. In N3 it
looks like this:

23 fam:hasFather rdf:type owl:FunctionalProperty .
24 fam:hasMother rdf:type owl:FunctionalProperty .

We could also have stated this by using maximum cardinality:

hasFather max 1 Thing
hasMother max 1 Thing

9http://www.w3.org/TR/owl-ref/#FunctionalProperty-def

5/12

http://www.w3.org/TR/owl-ref/#FunctionalProperty-def
http://www.w3.org/TR/owl-ref/#FunctionalProperty-def

2.4 Exercise

State that a woman can only have female as gender, and a man can only have male as gender.

2.4.1 Solution

One way to express this in OWL is to say that all instances of Woman can only have the value
Female for the property hasGender. To do this we must make an anonymous class that only
contains the individual Female. In Protégé this is done by using the curly brackets. The whole
expression is for Woman

hasGender only {Female}

and for :Man

hasGender only {Male}

In DL:
Woman v ∀hasGender.{Female} Man v ∀hasGender.{Male}

In N3:

25 fam:Woman rdfs:subClassOf
26 [rdf:type owl:Restriction ;
27 owl:onProperty fam:hasGender ;
28 owl:allValuesFrom
29 [rdf:type owl:Class ;
30 owl:oneOf (fam:Female)
31]] .
32
33 fam:Man rdfs:subClassOf
34 [rdf:type owl:Restriction ;
35 owl:onProperty fam:hasGender ;
36 owl:allValuesFrom
37 [rdf:type owl:Class ;
38 owl:oneOf (fam:Male)
39]] .

2.5 Exercise

State that nothing can be both male and female.

2.5.1 Solution

This is done by adding :Male to the (empty) list of different individuals for :Female. In RDF
syntax the keyword is owl:differentFrom.

In DL one normally operate with a unique name assumption, so if different constants represent
different objects, but if not it would simply be:

Male 6= Female

In N3:

40 fam:Female owl:differentFrom fam:Male .

6/12

2.6 Exercise

Define the gender so that there can only be the genders man and woman.

2.6.1 Solution

State this by making the class Gender equivalent to the class {Female, Male}. In RDF syntax
owl:oneOf is used to define a class by listing all the members of the class:

In DL:

Gender ≡ {Male, Female}

In N3:

41 fam:Gender owl:equivalentClass
42 [rdf:type owl:Class ;
43 owl:oneOf (fam:Male fam:Female)
44] .

2.7 Exercise

Explain what disjointness is. For all pair of classes in the family ontology, add the correct
disjoint axioms.

2.7.1 Solution

Quoting disjointWith-def10 :

owl:disjointWith is a built-in OWL property with a class description as domain
and range. Each owl:disjointWith statement asserts that the class extensions of
the two class descriptions involved have no individuals in common. Like axioms
with rdfs:subClassOf, declaring two classes to be disjoint is a partial definition: it
imposes a necessary but not sufficient condition on the class.

In our case it is safe to say that all the classes Family, Gender and Person are pairwise disjoint,
and that the classes Man and Woman are disjoint.

In DL:

Family uGender v ⊥ Family u Person v ⊥

Gender u Person v ⊥

Man uWoman v ⊥

which translates to "nothing is both man and woman".

In N3:

45 fam:Family owl:disjointWith fam:Gender, foaf:Person .
46 fam:Gender owl:disjointWith foaf:Person .
47 fam:Man owl:disjointWith fam:Woman .

10http://www.w3.org/TR/owl-ref/#disjointWith-def

7/12

http://www.w3.org/TR/owl-ref/#disjointWith-def
http://www.w3.org/TR/owl-ref/#disjointWith-def

2.8 Exercise

State that a person is either a man or a woman, but not both.

2.8.1 Solution

This translates to "the Person is equivalent to the union of Man and Woman, and Man and Woman
are disjoint".

The classes Man and Woman are already stated as disjoint, so we need only define that Person is
equivalent to the union of Man and Woman.

In DL:

Person ≡Man tWoman

In N3:

48 foaf:Person owl:equivalentClass
49 [rdf:type owl:Class ;
50 owl:unionOf (fam:Man fam:Woman)
51] .

2.9 Exercise

Explain what inverse properties are. For all the properties that exist in our ontology, add the
correct inverse property axioms. You are not supposed to add new properties, only state that a
property is the inverse of an other property if they already exist in the ontology.

2.9.1 Solution

Quoting inverseOf-def11 :

An axiom of the form P1 owl:inverseOf P2 asserts that for every pair (x,y) in the
property extension of P1, there is a pair (y,x) in the property extension of P2, and
vice versa.

To illustrate this let us use an example: If Homer is the husband of Marge, than Marge must
be the wife of Homer. If this is true in every possible case, then hasHusband is the inverse of
hasWife, from which it follows that hasWife is the inverse of hasHusband.

In DL it is common to use ·− to indicate the inverse of a relation:

hasChild ≡ hasParent− hasHusband ≡ hasWife−

In N3:

52 fam:hasChild owl:inverseOf fam:hasParent .
53 fam:hasHusband owl:inverseOf fam:hasWife .

11http://www.w3.org/TR/owl-ref/#inverseOf-def

8/12

http://www.w3.org/TR/owl-ref/#inverseOf-def
http://www.w3.org/TR/owl-ref/#inverseOf-def

2.10 Exercise

Explain what it means for a property to be transitive or symmetric.

For all the properties in our ontology, if it is natural, state that they are transitive and/or
symmetric.

There is no standard way of asserting characteristics for properties in DL, so you may skip this
part. The more or less common way of assering that a property P is asymmetric, symmetric,
reflexive, reflexive or transitive in DL literature is Asym(P), Sym(P), Ref(P), Irr(P) or Tra(P),
respectively.

To say that two properties P1 and P2 are disjoint is commonly done in DL literature with
Dis(P1, P2).

2.10.1 Solution

A property R is symmetric if, for all a and b, a is related to b by R means that also b is related
to a by R. The symmetric properties are in our case fam:isRelativeOf, fam:hasSibling and
fam:hasSpouse. If fam:hasSibling is symmetric, then if Bart is the sibling of Lisa, then Lisa
must be a sibling of Bart—which is reasonable.

A property R is transitive if, for all a, b and c, a is related to b by R and b is related to c

by R means that a is related to c by R. The transitive properties are in the family ontology
fam:hasBrother, fam:hasSister and fam:hasSibling. If fam:hasSister is transitive then if
Bart has a sister Lisa and Lisa has a sister Maggie, than Maggie is also the sister of Bart—which
is also reasonable.

54 fam:isRelativeOf rdf:type owl:SymmetricProperty .
55
56 fam:hasBrother rdf:type owl:TransitiveProperty .
57 fam:hasSister rdf:type owl:TransitiveProperty .
58 fam:hasSibling rdf:type owl:TransitiveProperty .
59 fam:hasSibling rdf:type owl:SymmetricProperty .
60
61 fam:hasSpouse rdf:type owl:SymmetricProperty .

2.11 Exercise

Is a subproperty of a transitive property necessarily also transitive? Explain why / why not?

2.12 Exercise

Is a subproperty of a symmetric property necessarily also symmetric? Explain why / why not?

2.13 Exercise

Explain what it means for a property to be inverse functional.

For all properties in our ontology, state that they are inverse functional if you believe that is
correct.

9/12

2.13.1 Solution

Quoting InverseFunctionalProperty-def12 :

If a property is declared to be inverse-functional, then the object of a property
statement uniquely determines the subject (some individual). More formally, if we
state that P is an owl:InverseFunctionalProperty, then this asserts that a value y
can only be the value of P for a single instance x, i.e. there cannot be two distinct
instances x1 and x2 such that both pairs (x1,y) and (x2,y) are instances of P.

Assume foaf:name is inverse functional. Than all persons must have a distinct name, which
clearly is not correct. This is correct for the Simpson instances of the family ontology, but it
does not hold in general.

There is no property that is a good candidate for a inverse functional property.

Note also that foaf:name is an owl:DatatypeProperty and such properties are not allowed
as inverse functional in OWL DL.

3 OWL metrics

3.1 Exercise

Make a java program which loads an OWL ontology and lists

• the number of classes,

• the number of object properties,

• the number of datatype properties,

• the number of individuals and

• the DL expressivity of the ontology.

Use a Pellet reasoner to do your reasoning.

3.1.1 Tip

You should get the same results from your program as you get when loading an ontology in
Protégé.

I used the Pellet API to get hold of the expressivity of the ontology, using the classes JenaLoader
and KnowledgeBase.

3.1.2 Solution

My solution is a program called OWLMetrics and extends the program RDFSMetrics.

1 import org.apache.jena.rdf.model.*;
2 import org.apache.jena.ontology.*;
3 import org.apache.jena.reasoner.*;

12http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def

10/12

http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def
http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def

Figure 1: Protégé screenshot with its relevant metrics section marked.

4 import org.mindswap.pellet.jena.*;
5 import org.mindswap.pellet.*;
6 import com.clarkparsia.pellet.expressivity.*;
7
8 public class OWLMetrics extends RDFSMetrics{
9

10 protected static OntModel modelOWL;
11
12 public void readModel(String file){
13 super.readModel(file);
14 Reasoner r = PelletReasonerFactory.theInstance().create();
15 InfModel emptyOWL = ModelFactory.createInfModel(r, ModelFactory.createDefaultModel());
16 InfModel allOWL = ModelFactory.createInfModel(r, modelRDF);
17 Model diff = allOWL.difference(emptyOWL);
18
19 OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_MEM);
20 modelOWL = ModelFactory.createOntologyModel(spec, diff);
21 }
22
23 public void printMetrics(){
24 System.out.println("Named classes: " +
25 getIteratorSize(modelOWL.listNamedClasses()));
26 System.out.println("Named object properties: " +
27 getIteratorSize(modelOWL.listObjectProperties()));
28 System.out.println("Named datatype properties: " +
29 getIteratorSize(modelOWL.listDatatypeProperties()));
30 System.out.println("Named individuals: " +
31 getIteratorSize(modelOWL.listIndividuals()));
32 }
33
34 public void printExpressivity(String URI){
35 JenaLoader jl = new JenaLoader();
36 KnowledgeBase kb = jl.createKB(URI);

11/12

37 System.out.println("Expressivity: " + kb.getExpressivity());
38 }
39
40 public static void main(String args[]){
41 OWLMetrics dave = new OWLMetrics();
42 dave.readModel(args[0]);
43 dave.printMetrics();
44 dave.printExpressivity(args[0]);
45 }
46 } // end class

3.2 Exercise

Test the metrics of your family ontology.

3.2.1 Tip

Note that if your file uses RDFS class or properties, you can have trouble getting the results
you expect from Jena, so it is smart to convert the relevant RDFS constructs to OWL. This is
easily done manually, as explained in an eariler exercise for this week, or you can open the file
in Protégé and save it, which should convert it to OWL.

12/12

	The Pizza ontology
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Family relations in OWL
	Exercise
	Tip
	Solution

	Exercise
	Tip 1
	Tip 2
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Exercise
	Exercise
	Solution

	OWL metrics
	Exercise
	Tip
	Solution

	Exercise
	Tip

