

Lecture 5 ·· 13th Feb

2 / 45

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions
- RDF has a mathematically defined semantics

Basic Set Algebr

Sets: Cantor's Definition

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

• Translated:

A 'set' is any collection M of definite, distinguishable objects m of our intuition or intellect (called the 'elements' of M) to be conceived as a whole.

• There are some problems with this, but it's good enough for us!

INF3580/4580 :: Spring 2017

Sets

Lecture 5 :: 13th Februar

Basic Set Algebra

Basic Set Algebr

5 / 45

Lecture 5 :: 13th February

6 / 45

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - $\bullet\,$ knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements
- Nothing can be in a set several times
- Two sets A and B are equal if they contain the same elements
 - everything that is in A is also in B
 - everything that is in B is also in A

Basic Set Algebra

Elements, Set Equality

• Notation for finite sets:

 $\{\mathsf{`a'}, \mathbf{1}, \triangle\}$

- $\bullet\,$ Contains 'a', 1, and $\bigtriangleup,$ and nothing else.
- There is no order between elements

$$\{1, riangle\} = \{ riangle, 1\}$$

• Nothing can be in a set several times

 $\{1, riangle, riangle\} = \{1, riangle\}$

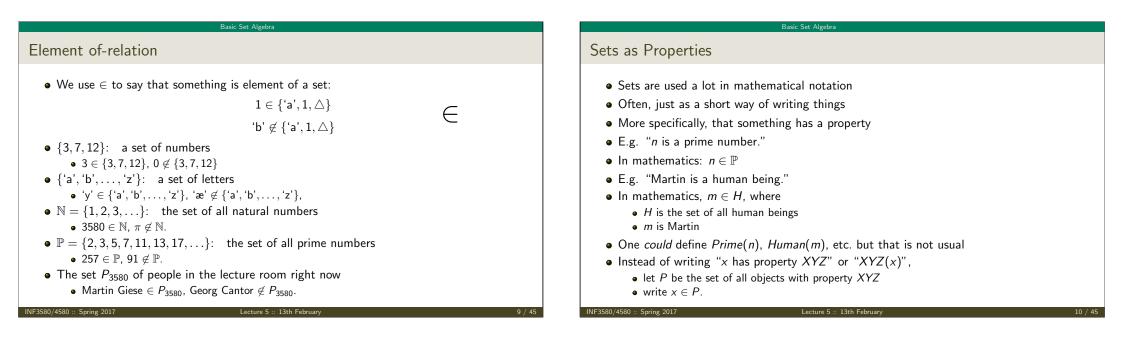
• Sets with different elements are different:

 $\{1,2\} \neq \{2,3\}$

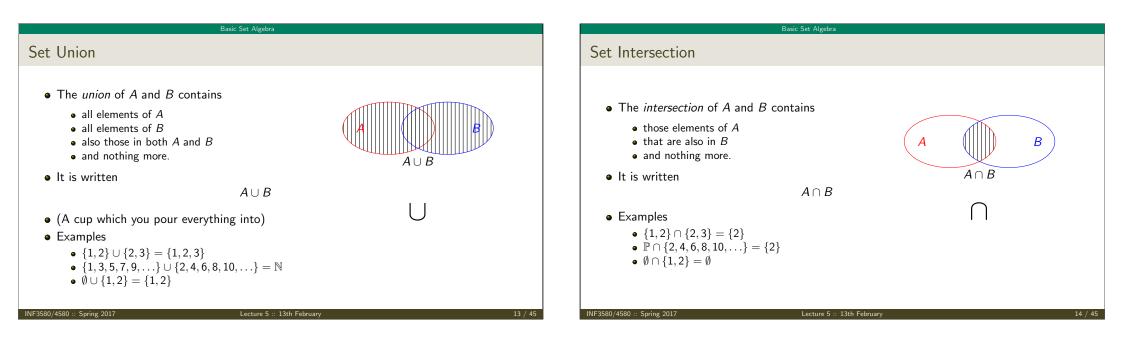
7 / 45

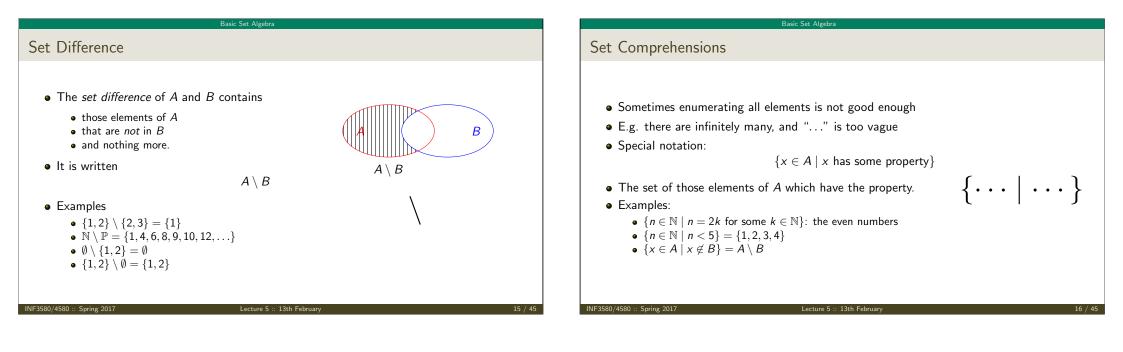
 $\{\cdots\}$

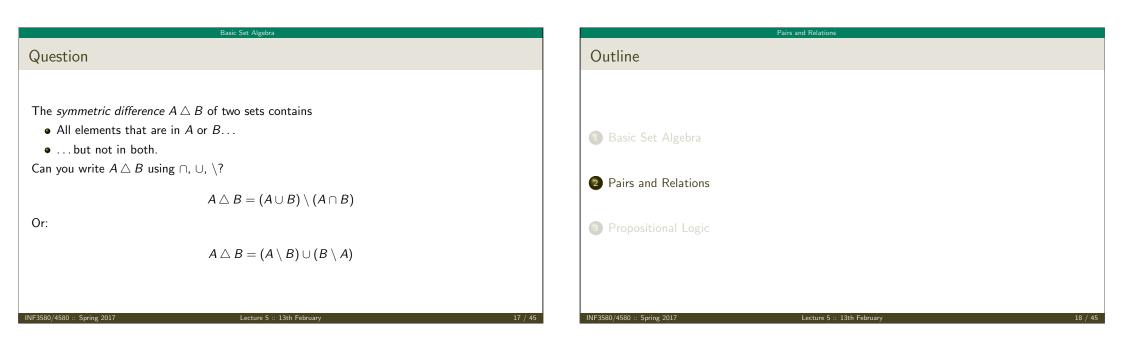
'1 ∧}



Basic Set Algebra		Basic Set Algebra	
The Empty Set		Subsets	
 Sometimes, you need a set that has no elements. This is called the <i>empty set</i> Notation: Ø or {} x ∉ Ø, whatever x is! 	Ø	 Let A and B be sets <i>if</i> every element of A is also in B <i>then A</i> is called a <i>subset</i> of B This is written A ⊆ B Examples {1} ⊆ {1, 'a', △} {1,3} ⊈ {1,2} ℙ ⊆ ℕ ∅ ⊆ A for any set A A = B if and only if A ⊆ B and B ⊆ A 	
INF3580/4580 :: Spring 2017 Lecture 5 :: 13th February	11 / 45	INF3580/4580 :: Spring 2017 Lecture 5 :: 13th February	12 / 45







Pairs and Relations		
Motivation		Pairs
		A pair is an oWritten
 RDF is all about Resources (objects) Their properties (rdf:type) Their relations amongst each other 		● Equal if com
 Sets are good to group objects with some properties! 		 Order matter
• How do we talk about relations between objects?		
		 An object car
		• $\langle x,y angle$ is a pa
INF3580/4580 :: Spring 2017 Lecture 5 :: 13th February	19 / 45	INF3580/4580 :: Spring 2017

Pairs

- A pair is an *ordered* collection of two objects
- Written

$$\langle x, y \rangle$$

Pairs and Relations

 $\langle \cdots \rangle$

• Equal if components are equal:

$$\langle a, b \rangle = \langle x, y \rangle$$
 if and only if $a = x$ and $b = y$

• Order matters:

$$\langle 1, \mathsf{`a'}
angle
eq \langle \mathsf{`a'}, 1
angle$$

• An object can be twice in a pair:

Lecture 5 :: 13th February

• $\langle x, y \rangle$ is a pair, no matter if x = y or not.

n/45

Pairs and Relations

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the *cross product* of A and B, written

$A \times B$

• Example:

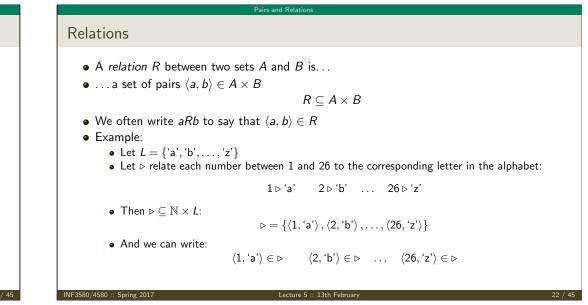
- $A = \{1, 2, 3\}, B = \{\text{`a', 'b'}\}.$ • $A \times B = \{ \langle 1, \text{`a'} \rangle, \langle 2, \text{`a'} \rangle, \langle 3, \text{`a'} \rangle, \langle 1, \text{`b'} \rangle, \langle 2, \text{`b'} \rangle, \langle 3, \text{`b'} \rangle \}$
- Why bother?
- Instead of " $\langle a, b \rangle$ is a pair of a natural number and a person in this room"...

Lecture 5 :: 13th February

- $\ldots \langle a, b \rangle \in \mathbb{N} \times P_{3580}$
- But most of all, there are subsets of cross products...

INF3580/4580 :: Spring 2017

Х



Pairs and Relations

• A relation *R* on some set *A* is a relation between *A* and *A*:

$$R \subseteq A \times A = A^2$$

• Example: <

INF3580/4580 :: Spring 2017

More Relations

• Consider the < order on natural numbers:

$$1 < 2$$
 $1 < 3$ $1 < 4$... $2 < 3$ $2 < 4$...

 $\bullet \ < \subseteq \mathbb{N} \times \mathbb{N}:$

$$egin{array}{rcl} < &=& \left\{ egin{array}{cccc} \langle 1,2
angle\,,&\langle 1,3
angle\,,&\langle 1,4
angle\,,&\ldots\ &\langle 2,3
angle\,,&\langle 2,4
angle\,,&\ldots\ &\langle 3,4
angle\,,&\ldots\ && \end{array}
ight.$$

• $< = \{ \langle x, y \rangle \in \mathbb{N}^2 \mid x \text{ is less than } y \}$

Family Relations Consider the set S = {Homer, Marge, Bart, Lisa, Maggie}. Define a relation P on S such that xPy iff x is parent of y For instance: Homer P Bart Marge P Maggie

Pairs and Relations

• As a set of pairs:

$$\begin{array}{ll} P = & \{ & \langle \mathsf{Homer}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \,, \\ & & \langle \mathsf{Marge}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \, \, \} \subseteq S^2 \end{array}$$

• For instance:

$$\langle \mathsf{Homer},\mathsf{Bart}\rangle\in\mathsf{P}\qquad\langle\mathsf{Marge},\mathsf{Maggie}\rangle\in\mathsf{P}$$

Set operatrions on relations

• Since relations are just sets of pairs, we can use set operations and relations on them.

Pairs and Relation

- We say that R is a subrelation P if $R \subseteq P$.
- E.g.: if F is the father-of-relation,

 $F = \{ \langle \mathsf{Homer}, \mathsf{Bart} \rangle, \langle \mathsf{Homer}, \mathsf{Lisa} \rangle, \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \}$

then $F \subseteq P$.

• If *M* is the mother-of-relation,

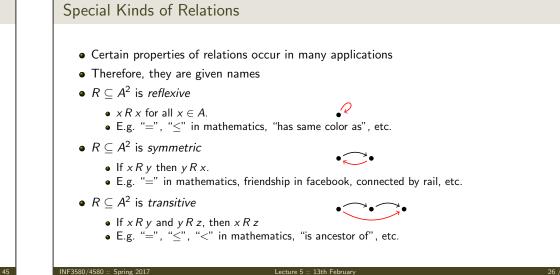
 $M = \{ \langle \mathsf{Marge}, \mathsf{Bart} \rangle, \langle \mathsf{Marge}, \mathsf{Lisa} \rangle, \langle \mathsf{Marge}, \mathsf{Marge}, \mathsf{Maggie} \rangle \}$

then $F \cup M = P$.

INF3580/4580 :: Spring 2017

Lecture 5 :: 13th February

25 / 45



Pairs and Rela

Pairs and Relations	Propositional Logic
Question	Outline
Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?	Basic Set Algebra
$\mathcal{A} imes \mathcal{A} = \left\{ \left< 1,1 \right>, \left< 1,2 \right>, \left< 2,1 \right>, \left< 2,2 \right> ight\}$	
A relation on A is a subset of $A \times A$. So how many subsets are there?	2 Pairs and Relations
$\{\}, \{\langle 1,1 angle\}, \{\langle 1,2 angle\}, \{\langle 1,1 angle, \langle 1,2 angle\}, \ldots$	3 Propositional Logic
16 relations on A. Generally: $2^{(A ^2)}$	
INF3580/4580 :: Spring 2017 Lecture 5 :: 13th February	27 / 45 INF3580/4580 :: Spring 2017 Lecture 5 :: 13th February

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - $\bullet\,$ modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
 - talks about sets and relations
- Basic concepts can be explained using predicate logic

INF3580/4580 :: Spring 2017

Lecture 5 :: 13th February

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \ldots is a formula
- 2 if A and B are formulas, then
 - $(A \wedge B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $(A \rightarrow B)$ is also a formula (read "A implies B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae:
 - $p \quad (p \land \neg r) \quad (q \land q) \quad (q \land \neg q) \quad ((p \lor \neg q) \land (\neg p \to q))$

 $\land \lor \rightarrow \neg$

• Examples of non-formulas:

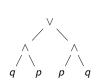
 $pqr p \neg q \land (p$

Lecture 5

Propositional Logic

Propositional Formulas, Using Sets

- The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 *if* $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$
 - $\neg A \in \Phi$
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.



 Propositional Logic

 Terminology

 • $\neg, \land, \lor, \rightarrow$ are called connectives.

 • A formula $(A \land B)$ is called a conjunction.

 • A formula $(A \lor B)$ is called a disjunction.

 • A formula $(A \lor B)$ is called a disjunction.

 • A formula $(A \rightarrow B)$ is called an implication.

 • A formula $\neg A$ is called a negation.

INF3580/4580 :: Spring 2017

Truth

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether *p* and *q* are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context
- Let's formalize this context, a.k.a. interpretation, a.k.a. model

F3580/4580 :: Spring 2017

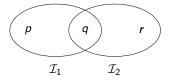
Lecture 5 :: 13th Febru

• E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false. • But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.

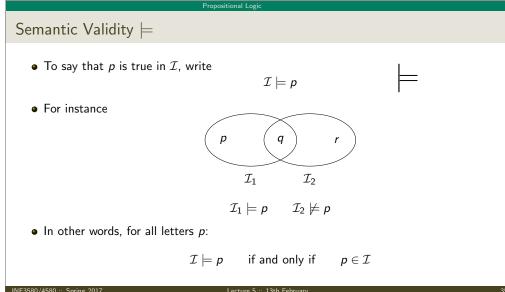
• Idea: put all letters that are "true" into a set!

• Define: An *interpretation* \mathcal{I} is a set of letters.

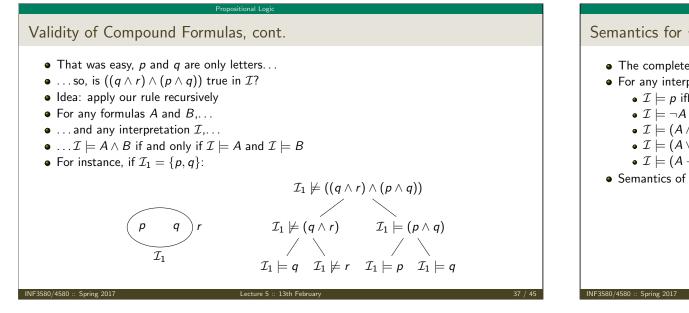
• Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.

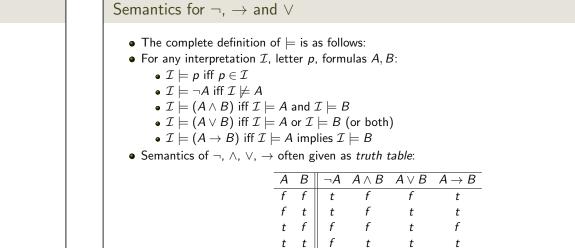


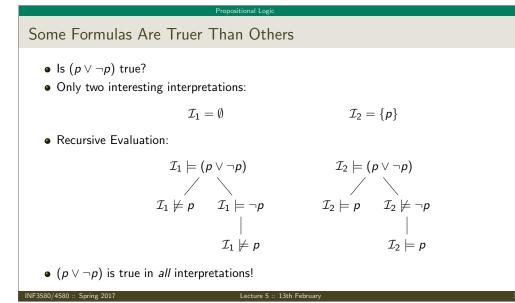
Interpretations



Propositional Logic Validity of Compound Formulas • So, is $(p \land q)$ true? • That depends on whether *p* and *q* are true! • And that depends on the interpretation. • All right then, given some \mathcal{I} , is $(p \land q)$ true? • Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$ • No. otherwise • For instance q р \mathcal{I}_1 \mathcal{I}_2 $\mathcal{I}_2 \not\models p \land q$ $\mathcal{I}_1 \models p \land q$







T	
Tauto	logies

• A formula A that is true in all interpretations is called a tautology

Propositional Logi

- also logically valid
- also a *theorem* (of propositional logic)
- written:

 $\models A$

Lecture 5 ··· 13th Februar

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - Marit B. will win the race or Marit B. will not win the race.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!

Checking Tautologies

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

 $\models (\neg p \lor (\neg q \lor (p \land q)))$?

р	q	$\neg p$	$\neg q$	$(p \land q)$	$(\neg q \lor (p \land q))$	$(\neg p \lor (\neg q \lor (p \land q)))$
f	f	t	t	f	t	t
f	t	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

• Therefore: $(\neg p \lor (\neg q \lor (p \land q)))$ is a tautology!

141 3300/4300 .. Spring 2017

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if
 - $\mathcal{I}\models B$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

 $p \wedge q \models p$

Lecture 5 :: 13th February

- Independent of meaning of *p* and *q*:
 - If it rains and the sky is blue, then it rains
 - $\bullet\,$ If M.B. wins the race and the world ends, then M.B. wins the race
 - $\bullet\,$ If 'tis brillig and the slythy toves do gyre, then 'tis brillig

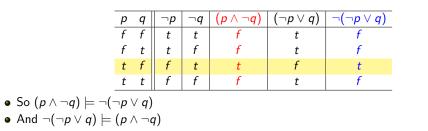
Propositional Logi

- Checking Entailment
- SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (A \rightarrow B)$

• We can check simple cases with a truth table:

$$(p \wedge \neg q) \models \neg (\neg p \lor q)$$
 ?



Propositional Logic

Equivalent formulas and redundant connectives

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are *equivalent* if A and B always have the same truth value.
- $\bullet\,$ For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:

$$\bullet \models ((A \lor B) \leftrightarrow \neg (\neg A \land \neg B))$$

•
$$\models$$
 (($A \rightarrow B$) \leftrightarrow ($\neg A \lor B$)

•
$$\models ((A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A)))$$

- \bullet So we actually only need \neg and \wedge to express any formula!
- \bullet Any formula is equivalent to a formula containing only the connectives \neg and $\wedge.$

Propositional Logic

Recap

Sets

- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an *interpretation (semantics)*
 - interpretations are sets of letters
 - recursive definition for semantics of \land , \lor , \rightarrow , \neg
 - $\models A \text{ if } \mathcal{I} \models A \text{ for all } \mathcal{I} \text{ (tautology)}$
 - $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)
 - truth tables can be used for checking validity and etailment.

INF3580/4580 :: Spring 2017

Lecture 5 :: 13th February

45 / 45

