
INF3580/4580 – MANDATORY EXERCISE no. 2

Published date: 30.01.2017

Due date: 07.02.2017 23:59.

Delivery file: 1: Simpsons.java.

Delivery attempts: 1.

Read the whole of this document thoroughly before solving any of the exer-
cises. The objective of this exercise is to learn and use basic Jena methods.
You shall write a java program, called Simpsons.java, which takes two ar-
guments. The first argument is the path to an RDF file, the path may be
an URL or a local path. The second argument is a filename to which the
output shall be written. You shall assume that the RDF serialisation of both
files is correctly indicated by their file extension: .rdf = RDF/XML, .ttl
= Turtle, .n3 = N3 and .nt = N-Triples.

Your program shall create a model from the input file, add triples to this
model, add more triples to the model based on data in the model, and, finally,
output the model to file. The steps must be carried out in this sequence.
Each step is explained in detail below.

1 Read input

Your program shall read the RDF file given in the first argument to the
program and create a Jena model from it.

Tip: It seems that Jena is not so good at discovering the RDF seriali-
sation used in files by itself, especially for files addressed with an URL. A
solution to this problem is to make a method that gets the file extension
of the filename by the use of string functions and returns the appropriate
RDF serialisation format in Jena’s predefined strings. You can then use your
method both for reading input and writing to file in the correct serialisation
format.

You can assume that the input file has defined the following prefix–
namespaces:

1

prefix namespace
xsd http://www.w3.org/2001/XMLSchema#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
sim http://www.ifi.uio.no/INF3580/simpsons#
fam http://www.ifi.uio.no/INF3580/family#
foaf http://xmlns.com/foaf/0.1/

2 Adding information

Your program shall then add the following information about Maggie,
Mona, Abraham and Herb, whose identifiers are respectively sim:Maggie,
sim:Mona, sim:Abraham and sim:Herb, to the model read from the input
file. You will need to use the class foaf:Person, the predicates rdf:type,
foaf:age, foaf:name, fam:hasSpouse and fam:hasFather, and the stan-
dard xsd datatypes.1 You shall assume that the prefixes sim and fam are
defined in the model that your program has read in the section above, so
do not hardcode these namespaces in your program, but get them from the
model you have created. (Hint: Model is a subinterface of PrefixMapping.)

Add the following information to the model using Jena methods:

• Maggie is a person, whose name is "Maggie Simpson" and age is 1.
The datatype of the age value is xsd:int.

• Mona is a person, whose name is "Mona Simpson" and age is 70. The
datatype of the age value is xsd:int.

• Abraham is a person, whose name is "Abraham Simpson" and age is
78. The datatype of the age value is xsd:int.

• Abraham is the spouse of Mona, and Mona is the spouse of Abraham.

• Herb is a person.

• Herb has a father (but we do not know who it is, i.e., use a blank
node.).

3 Locate, read and write information

For each person in the model, i.e., for every resource of type foaf:Person,
add the following information according to the person’s age:

• if age < 2 year, then add a triple stating that the person is of type
fam:Infant,

1The intended meaning of these classes and predicates are as "expected" and is listed
in the previous mandatory exercise.

2

• if age < 18 year, then add a triple stating that the person is of type
fam:Minor,

• if age > 70 year, then add a triple stating that the person is of type
fam:Old.

Example: If the input model contains the triples

sim:Someone rdf:type foaf:Person ;
foaf:age "75"^^xsd:int .

then your program shall add the triple

sim:Someone rdf:type fam:Old .

to the model.

4 Write to file

Finally, write the model to the file given as second argument to the program
and in the RDF serialisation as specified by the file’s extension.

5 Ending notes

5.1 Executing program

The program must successfully compile with the command

javac -cp "path/to/jena/lib/*:." Simpsons.java

where path/to/jena/lib/* contains the Jena jar files. If you have written
the program using Eclipse, then you must probably remove any package
specification from the program. The source code must be nicely structured
and commented so it is easy to understand the program and the intention
behind its parts.

Running the command

java -cp "path/to/jena/lib/*:." Simpsons oblig/2/simpsons.ttl output.ttl

where oblig/2/simpsons.ttl is a file containing the prefixes as specified in
the exercise text (rdf file from oblig1 file should do), shall produce an RDF
Turtle file as specified by the exercise. To do this you can use the following
Makefile.

JAVA_CP = "lib/jena/lib/*:."
SIMPSONS_FILE = oblig/2/simpsons.ttl

3

java = java -cp $(JAVA_CP)
javac = javac -cp $(JAVA_CP)

%.class: %.java
@$(javac) $<

output.ttl: Simpsons.class
@$(java) $(basename $(<F)) $(SIMPSONS_FILE) $@

run_test: Test.class
@$(java) $(basename $(<F)) $(SIMPSONS_FILE) $@

Change the variable JAVA_CP to contain the path to where you keep your
Jena jar files. Placing this Makefile in the same folder as your java program
and writing

make output.ttl

should compile your java program and create the file output.ttl as specified
in this exercise.

Below is a tiny test program called Test.java you can use to test the
above Makefile and that compiling and running java works. Running

make run_test

from inside the same folder as where the Makefile and Test.java is located
should output the two input arguments given to the program.

public class Test{
public static void main(String args[]){

System.out.println("Hello, the two input arguments are: \n\t(1) "
+ args[0] + " \n\t(2) "
+ args[1]);

}
}

The Makefile and Test.java is available for download at http://sws.ifi.
uio.no/inf3580/v15/oblig/2/.

5.2 Delivery, Devilry

Mandatory exercises are to be handed in using Devilry. Make sure that your
are registered in the system by logging on and finding that an oblig2 is
available as an assignment in INF3580 or INF4580. Check this before you
start solving the exercises! If you are not registered in the system, give notice
to leifhka@ifi.uio.no.

Your delivery shall contain one file, Simpsons.java, which is not to be
placed inside any folders, zip-file or similar. Simply upload the source code
file Simpsons.java to Devilry.

4

http://sws.ifi.uio.no/inf3580/v15/oblig/2/
http://sws.ifi.uio.no/inf3580/v15/oblig/2/
https://devilry.ifi.uio.no/

5.3 Mr. Oblig

You can, and should, use Mr. Oblig to test your delivery before handing it in.
Mr. Oblig is located at http://sws.ifi.uio.no/mroblig/. Note that Mr.
Oblig comes without any warranty. A non-functioning Mr. Oblig will not
have any effect on the due date of this mandatory exercise, and a flawless test
report from Mr. Oblig does not guarantee that your delivery will be graded
with passed. Also, since there may be many correct answers to an exercise,
it is possible that Mr. Oblig does not agree with your solution even though
it is correct. However, a perfect score from Mr. Oblig is an indication that
your delivery is good and that it does not contain any "stupid" errors.

Note that you can only upload the output of running your java program
to Mr. Oblig, and not the java program. You should be careful to test the
program with different outputs, e.g., with different values of the prefixes sim
and fam, and different ages—and of course the limit cases, e.g., age 17 and
age 18—as input, before handing in.

Good Luck!

5

http://sws.ifi.uio.no/mroblig/

	Read input
	Adding information
	Locate, read and write information
	Write to file
	Ending notes
	Executing program
	Delivery, Devilry
	Mr. Oblig

