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Priority Queues (Heaps)

Ailoush jobs sent to a printer are generally placed on a queve, this might not always be
he best thng to do. For instance, one job might be particularly important, so it might
oo dusirable to allow that job to be run as soon as the printer is available. Conversely. i,
- hen the printer becomes available, there are several 1-page jobs and one 100-page job, it
snght be reasonable to make the long job go last, even if 1t is not the last job submitted.
Unfortunately, most systems do not do this, which can be particularly annoying at times.)

Similarly, in a multiuser environment, the aperating system scheduter must decide
wiiich ol several processes to run, Generally a process is allowed to run only for a hxed
period of time. One algorithm uses a queue. Jobs are initially placed at the end of the
quene. The scheduler will repeatedly take the first job on the queue, run it until either it
fmishes or its time limit is up, and place it at the end of the queue if it does not finish.
This strategy is generally not appropriate, because very short jobs will seem to take a long
lime because of the wait involved to run. Generally, it is important that short jobs finish
2 fast as possible, so these jobs should have precedence over jobs that have already been
running, Furthermore, some jobs that are not short are still very important and should also
have precedence.

This particular application seems 1o require a special kind of queue, known as a priority
juene, In this chapter, we will discuss

+ Efficient implementation of the priority queue ap7.
+ Uses of priority queues.

» Advanced implementations of priority queues.

The data structures we will see are among the most elegant in computer science.

6.1. Model

A priority queue is a data structure that allows at least the following two operations: insert,
which does the obvious thing; and deleteMin, which finds, returns, and removes the mini-
mum element in the priority queue. The insert operation is the equivalent of engueue, and
deletedin is the priority queue equivalent of the queues dequeue operation.

As with most data structures, it is sometimes possible ta add other operations, but
these are extensions and not part of the basic model depicted in Figure 6.1.
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eleteMi L insert
deleteMin Priority Quene

Figure 6.1 Basic modet of a priority queue

Priority queues have many applications besides operating systems. In Chapter 7, we
will see how priority queues are used for external sorting. Priority queues are also important
in the implementation of greedy algorithms, which operate by repeatedly finding a minimum;
we will see specific examples in Chapters 9 and 10. In this chapter we will see a use of
priority queues in discrete event simulation.

6.2. Simple Implementations

There are several obvious ways 1o implement a priotity queue. We could use a simple linked
list, performing insertions at the front in O(1) and traversing the list, which requires O(N)
time, to delete the minimum. Akternatively, we could insist that the kst be kept always
sorted; this makes insertions expensive (O(N)) and deleteMins cheap (O(1)). The former
is probably the better idea of the two, based on the fact that there are never more deleteMins
than insertions.

Another way of implementing priority queues would be to use a binary search tree, This
gives an O(log N) average running time for both operations. This is true in spite of the fact
that although the insertions are randorn, the deletions are not. Recalt that the only element
we ever delete is the minimum, Repeatedly removing a node that is in the left subtree would
seem to hurt the balance of the tree by making the right subtree heavy. However, the right
subtree is randont. In the worst case, where the deleteMins have depleted the left subtree,
the right subtree would have at most twice as many elements as it should. This adds only a
small constant to its expected depth. Notice that the bound can be made into a worst-case
bound by using a balanced tree; this protects one against bad insertion sequerices,

Using a search tree could be overkill because it supports a host of operations that are
not required. The basic data structure we will use will not require links and will support
both operations in O(log N) worst-case time. Insertion will actually take constant time an
average, and our implementation will allow building a priority quette of N items in linear
time, if no deletions intervene, We will then discuss how to implement priority quenes to
support efficient merging. This additional operation seems to complicate matters a bit and
apparently requires the use of a linked structure.

I R S

6.3. Binary Heap

The implementation we will use is known as a binary heap. Its use is so comman for priority
queue implementations that, in the context of priority gueues, when the word heap is used
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without a qualiher, itis generally assumed to be referring to this implemensation of the data
structure. [n this section, we will refer to binary heaps merely as heaps. Like binary search
trees, fieaps have two properties, namely, a stracture property and a heap-order property.
As with avi trees, an operation on a heap can destroy one of the properties, so a heap oper-
ation must not terminate until all heap properties are in order. This s out to be simple
o do.

6.3.1. Structure Property

A heap is a binary tree that is completely filled, with the possible exception of the bot-
tom level, which is filied from left 1o right. Such a tree is known as a complete binary tree.
Figure 6.2 shows an example.

it is easy Lo show that a complete binary tree of height h has hetween 2" and 274! — |
nodes. This implies that the height of a complete binary tree 1s |log N, which is clearly
O(log N

An important observation is that because a complete binary tree is so regular, it can be
represented in an array and no links are necessary. The array in Figure 6.3 corresponds to
the heap in Figure 6.2.

For any element in array position i, the teft child is in position 2i, the right child is
in the celt after the left child (2i + 1), and the parent is in position {i/2]. Thus not only
are links not required, but the operations required to traverse the tree are extremely simple
and likely to be very fast on most computers. The only problem with this implementation
is that an estimate of the maximum heap size is required in advance, but typically this is

Figure 6,2 A complete binary tree

[ |ABC|D E'F!G H{I|J

G l 2 3 4 5 6 7 8 5 10 1l 12 13
Figure 6.3 Array implementation of complete binary tree
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public class BinaryHeap
{
pubTic BinaryHeap( )
{ /* Figure 6.4a */ }
public BinaryHeap( int capacity )
{ /% Figure 6.4a =/ }
public void insert{ Comparable x } throws Qverflow
{ /* Figure 6.8 =/ }
public Comparabte findMin( )
{ /* See online code */ }
public Comparable deleteMin( )
{ /* Figure 6.12 */ }

public boolean isEmpty( )

{ /* See online code */ }
public bootean isFuli( )

{ /* See online code %/ }
public void makeEmpty( )

{ /* Figure 6.4a */ }

private static final int DEFAULT_CAPACITY = 100;

private int currentSize; // Number of elements in heap
private Comparable [ ] array; // The heap array

private void percolatelown( int hole )
{ /* Figure 6.12 */ }

private void buildHeap( )
{ /* Figure 6.14 */ }

Figure 6.4 Class skeleton for priority queue

not a problem (and we can resize if necessary). In Figure 6.3, the Hmit on the heap size is
I3 elements. The array has a position 0; more an this later,

A heap data structure will, then, consist of an array (of Comparable abjects) and an
integer representing the current heap size. Figure 6.4 shaws a priority queue skeleton,
Figure 6.4a contains the constructors and a makeEmpty method.

Throughout this chapter, we shall draw the heaps as trees, with the implication that an
actual implementation will use simple arrays.

6.3.2. Heap Order Property

The property that allows operations to be performed quickly is the heap-order property.
Since we want to be able to find the minimum quickly, it makes sense that the smallest
element should be at the root. If we consider that any subtree should also be a heap, then
any nade should be smaller than all of its descendants.

Applying this logic, we arrive at the heap order property. In a heap, for every node X,
the key in the parent of X is smaller than (or equal o) the key in X, with the exception of
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/f:'-!
* Construct the binary heap. i
*f ’

pub¥ic BinaryHeap( )

{

}
/-‘.-*

* Construct the binary heap.
¥ Qparam capacity the capacity of the binary heap.
4
public BinaryHeap( int capacity ) ]
{

this( DEFAULT_CAPACITY ):

currentSize = 0;
array = new Comparablef capacity + 1 J; §
} :
o
* Make the priority queue logically empty. 5
*/
pubtic void makeEmpty( ) g
( .

}

Figure 6.4a Constructors and makeEmpty for priority queue

®
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Figure 6.5 Two complete trees (only the left tree is a heap)

currentSize = 0; :

the root (which has no parent).* In Figure 6.5 the tree on the left is a heap, but the tree on
the right is not (the dashed line shows the violation of heap order).

By the heap order property, the minimum element can always be found at the roat.
Thus, we get the extra operation, find¥in, in constant time,

* Analogously, we cans declare a (max) heap, which enables us to elficiently find and remove the maximum element,
by changing the heap order property. Thus, a priority queue can be used o find cither a minimum o a maximum,
hut this needs to be decided abead of time.
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6.3.3. Basic Heap Operations

{tis casy (both conceptually and practically) 1o perform the 1wo required vperations. All
the work involves ensuring that the heap-order property is maintained,

insert

Totnsert an element X into the heap, we create a hole in the next avaitable location, since
otherwise the tree will not be complete. 1f X can be placed in the hole without viclatung
heap order, then we do so and are done. Othersvise we slide the elernent that is in the holes
parent node into the hole, thus bubbling the hale up toward the roct. We continue this
process until X can be placed in the hole. Figure 6.6 shows that to insert 14, we create 2
hele in the next available heap location. Inserting 14 in the hole would viclae the heap-
order property, so 31 is slid down into the hole. This strategy is continued in Figure 6.7
unul the correct location for 14 is found.

This general strategy is known as a percolute up; the new element is percolated up
the heap untit the correct location is found. Insertion is easily implemented with the code
shown in Figure 6.8,

We could have implemented the percolation in the insert routine by performing re-
peated swaps until the correct order was established, but a swap requires three assignment
statements, IFan element is percolated up d levels, the number of assignments performed
by the swaps would be 3d. Our method uses d + 1 assignments,

Figure 6.7 The remaining two steps to insert 14 in previous heap
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* Insert into the priority queue, maintaining heap order,
* Duplicates are allowed.

* @param X the item to insert,

# @exception Overflow if container is full,

*/

public void insert( Comparable x ) throws Overflow

{

PFCAsFulI( ) )
throw new Overflow( ):

// Percolate up

int hole = ++currentSize;

for( ; hole > 1 & x.compareTo( array[ hole / 2 1) < 0; hole /= 2 )
arrayl hole ] = array[ hole / 2 ];

array[ hole ] = x;

Figure 6.8 Procedures (o insert into a binary heap

If the element to be inserted is the new minimum, it will be pushed all the way to the
top. At some point, hole will be 1 and we will want to break out of the loop. We could
do this with an explicit test, or we can put a very small value in position O in order to
make the loop terminate. This value must be guaranteed to be smalter than (or equal to)
any element in the heap; it is known as a sentinel. This idea is similar to the use of header
nodes in linked lists, By adding a dummy piece of information, we could avoid a test that
is executed once per loop iteration, thus saving some time. We elect not to use a sentinel
in our implementation.

The time to do the insertion could be as much as O(log N, if the element to be inserted
is the new minimum and is percolated all the way to the root. On average, the percolation
terminates early; it has been shown that 2.607 comparisons are required on average to
perform an insert, so the average insert moves an element up 1.607 levels,

deleteMin

deleteMins are handled in a similar manner as insertions. Finding the minimum is £3sy,
the hard part is removing it. When the minimum is removed, a hole is created at the root,
Since the heap now becomes one smaller, it follows that the last element X in the heap
must move somewhere in the heap. If X can be placed in the hole, then we are done. This
is unlikely, so we slide the smaller of the hole children into the hole, thus pushing the hole
down one level. We repeat this step until X can be placed in the hole. Thus, our action is
to place X in its correct spot along a path from the root containing minimum children.

In Figure 6.9 the left figure shows a heap prior to the deTeteMin. After 13 is removed,
we must now try to place 31 in the heap. The value 31 cannot be placed in the hole, because
this would violate heap order. Thus, we place the smaller child (14) in the hole, sliding the
hole down one level (see Fig. 6.10). We repeat this again, and since 31 is larger than 19,
we place 19 into the hole and create a new hole one level deeper. We then place 26 in the
hole and create a new hole on the bottom level since once again, 31 is too large. Finally,
we are able to place 31 in the hole (Fig. 6.11). This general strategy is known as a percolate
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Figure 6.3 Creation of the hele at the root

Cm
&
(6s) (29 (32 =

Figure 6.10 Next two steps in delateMin

Figure .11 Last two steps in deleteMin

down. We use the same technique as in the insert routine to avoid the use of swaps in this
routine.

A frequent implementation error in heaps occurs when there are an even number of
elements in the heap, and the one node that has only one child is encountered. You must
make sure not to assume that there are always two children, so this usually involves an
extra test. In the cede depicted in Figure 6.12, we've done this test at line 5. One extrernely
tricky solution is always to ensure that your algorithm thinks every node has two children.
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* Remove the smallest item from the priority queue.
* @return the smallest item, or null, if empty.
*/

public Comparable deleteMin( )

{
if( isEmpty( ) )
return nuil;
Comparable minItem = findMin( );
array[ 1 ] = array[ currentSize-- ];
percolateDown( 1 );
return minltem:
}
/fzﬁ

* Internal method to percolate down in the heap.

* @param hole the fndex at which the percolate begins,
=/

private void percolateDown( int hole )

{
int child;
Comparable tmp = array[ hole 1;

for( ; hole * 2 <= currentSize; hole = child )

child = hole = 2:
if{ child [= currentSize &&

6.3. Binary Hear

array[ child + 1 ].compareTo( array[ child 1) <0 )

child++:

if( array[ child 1.compareTol tmp ) < 0 )
array[ hole ] = array[ child ];

else

break:
}
array[ hole ] = tmp;

Figure 6,12 Method to perform deleteMin in a binary heap

Do this by placing 2 sentinel, of value higher than any in the heap, at the spot after the heap
ends, at the start of each percolate down when the heap size is even. You should think very
carefully before attempting this, and you must put in a prominent comment if you do use
this technique. Although this eliminates the need to test for the presence of a right child,
you cannot eliminate the requirement that you test when you reach the bottom, because
this would require a sentinel for every leaf.

The worst-case running time for this operation is O(fog N). On average, the element
that is placed at the root is percolated almost to the bottom of the heap (which is the level
it came from), so the average running time is O(log N).

121
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6.3.4. Other Heap Operations

Notice that although finding the minimum can be performed in constant ume, a heap
designed te find the minimum element Gilso known as a (miindheap) is of no help whatscever
in boding the maximum element. In fact, a heap has very little ordering intormation, so
there 1s no way to iind any particular element without a linear scan through the entire heap.
To see this, consider the large heap structure (the elements are not shown) in Figure 6.13,
where we see that the only information known about the maximum element is that it s at
one of the leaves. Half the elements, though, are contained in leaves, so this is practically
useless information. For this reason, if it is important to know where elements are, some
ather data structure, such as a hash table, must be used in additien 1o the heap. (Recall that
thie model does not allow looking inside the heap.)

If we assume that the position of every element is known by some other method,
then several other operations become cheap. The hrst three operations below all run in
logarithmic worst-case time.

decreaseKey
The decreaseKey(p,A) operation lowers the value of the item at position p by a positive
amount A. Since this might violate the heap order, it must be fixed by a percolate up. This
operation could be useful 1o system administrators: They can make their programs run with
highest priority.
increaseKey
The increaseKey(p,A) operation increases the value of the 1tem at position p by a positive

amount A. This is done with a percolate down. Many schedulers awtomatically drop the
priority of a process that is consuming excessive ceu time.,

delete

The delete(p) operation removes the node at position p from the heap. This is done by
first performing decreaseXey{p,} and then performing delteteMin(). When a process is

Figure 6.13 A very large complete binary tree

k%
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terminated by a user (instead of finishing normally), it must be removed from the priarity
queue.

buildHeap

The buildHeap operation takes as input N items and places them into an empty heap.
Obviously, this can be done with N successive inserts. Since each insert will take o
average and O(log N} worst-case time, the total running time of this algorithm would be
O(N) average but O(N log N) worst-case. Since this is a special instruction and there are no
other operations intervening, and we already know that the instruction can be performed in
linear average time, it is reasonable to expect that with reasonable care a linear time bound
can be guaranteed.

The general algorithm is to place the N items into the tree in any order, maintaining
the structure property. Then, if percolateDown(i) percolates down from node i, perform
the algorithm in Figure 6.14 to create a heap-ordered tree. *

The first tree in Figure 6.15 is the unordered tree. The seven remaining trees in Fig-
ures 6.15 through 6.18 show the result of each of the seven percolateDowns. Fach dashed
line corresponds to two comparisons: one to find the smaller child znd one to compare
the smaller child with the node. Notice that there are only 10 dashed lines in the entire
algorithm (there could have heen an 11th—where?) cerresponding to 20 comparisons.

/1‘4*
* Establish heap order property from an arbitrary
* arrangement of items. Runs in linear time.
*/
private void buildHeap( )
{
for{ int 1 = currentSize / 2; i » 0; i--)
percolateDown{ 1 );

}
Figure 6.14 Sketch of buildHeap

Figure 6.15 Left: initial heap; right: alter percolatebown(7)

*This code is pseudocede because there are no public metheds that could cause a heap-order violation. One
possible way 1o do this is to pass an array containing the N items, and have buildHeap copy these into the array
and then perform the percolations,

.23
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Figure 6.18 Left: after percolateDown(2); right: alter percolateDown(1)

To bound the running time of buildHeap, we must bound the number of dashed lines.
This can be done by computing the sum of the heights of all the nodes in the heap, which
is the maximum number of dashed lines. What we would like to show is that this sum is
O(N).

THEQREM 6.1,

For the perfect binary tree of height h containing 2"*% ~ 1 nodes, the sum of the heights of
the nodes is 20 — 1 — (h + 1),

k% o
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PROOF:

It is easy to see that this tree consists of 1 node at height b, 2 nodes at height h — 1, 22
nodes at height k — 2, and in general 2 nodes at height h — i. The sum of the heights
of ail the nodes 1s then

h
Zz*(h — i)

=0

h+2h—D+4h =D +80h— 3N+ 16h -4+ - +2" 4D {65.D

9]
il

Multiplying by 2 gives the equation
35 = 2h+ 4h — 1)+ 8Ch = 2) + 16(h — 3) + -+ + 2"(1) (6.2)

We subtract these two equations and obtain Equation (6.3). We find that certain wrms
almost cancel. For instance, we have 2h —2(h — 1) = 2 4(h~ D —4(h ~ 2) = 4, and
so on, The last term in Equation (6.2), 2h does not appear in Equation (6.1); thus,
it appears in Equation (6.3). The fitst term in Equation (6.1), h, does not appear in
Equatton (6.2); thus, —h appears in Equation {(6.3). We obtain

S=-h+2+4+8+ -2 L =" oD+ 1) (6.3

which proves the theorem,

A complete tree is not a perfect binary tree, but the result we have obtained is an upper
bound on the the sum of the heights of the nedes in a complete tree. Since a complete tree
has between 2" and 2'*! nodes, this theorem implies that this sum is O(N), where N is the
number of nodes,

Although the result we have obtained is sufficient to show that buildHeap is linear,
the bound on the sum of the heights is not as strong as possible. For a complete tree with
N = 2" nodes, the bound we have obtained is roughly 2N. The sum of the heights can
be shown by induction to be N — b(N), where b(N) is the number of 1s in the binary
representation of N,

6.4. Applications of Priority Queues

We have already mentioned how priority queues are used in operating systems design. In
Chapter 9, we will see how priority queues are used to implement several graph algorithms
efhciently. Here we will show how to use priority queues 1o obtain solutions to two prob-
lems.

6.4.1. The Selection Problem

The first problem we will examine is the selection problem from Chapter 1. Recall that the
input is a list of N elements, which can be totally ordered, and an integer k. The selection
problem is to find the kth largest element.

Two algorithims were given in Chapter 1, but neither is very efficient. The first algo-
rithm, which we shall call algorithm 1A, is to read the elements into an array and sort them,
returning the appropriate element. Assuming a simple sorting algorithm, the running time
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is O(N?). The alternative algorithm, 1B, is to read k elements into an array and sort them,
The smallest of these is in the kh position. We process the remaining elements one by one.
As an element arnves, it is compared with the kth element in the array. 1f it is larger, then
the kth element 1s removed, and the new element is placed in the correct place among the
remaining k —  clements. When the algorithm ends, the element in the keh position is the
answer. The running time is O(N +k) (why?). (Fh = [N/2], then both algorithms are O(N2).
Natice that for any k, we can solve the symmetric probiem of hinding the (N — k + 1}th
smallest element, so k= [N/2] is really the hardest case for these algorithms. This also
happens to be the most interesting case, since this value of k is known as the median.

We give two algorithms here, both of which run in O(N log N) in the extreme case of
k= [N/2}, which is a distinct improvement.

Algorithm 6A

For simplicity, we assume that we are interested in finding the kth smailest element. The
algorithm is simple. We read the N elements into an array. We then apply the buildHeap
algorithm to this array. Finally, we perform k deleteMin operations. The last element ex-
tracted from the heap is our answer, It should be clear that by changing the heap-order
praperty, we could sclve the original problem of finding the kth largest ¢lement.

The correctness of the algorithm should be clear. The worst-case timing is O(N) o
construct the heap, if buildHeap is used, and O{log N for each deleteMin, Since there are
k deleteMins, we abtain a total running time of O(N + klog N). I[k = O(N/ log N), then
the running time is dominated by the buildHeap operation and is O(N). For larger values
of k, the running time is Ok log NY. I k = [N/2], then the running iime is ©(N log N).

Notice that if we run this program for ¥ = N and record the values as they leave the
heap, we will have essentially sorted the input file in O(N log N} time. In Chapter 7, we
will refine this idea to obtain a fast sorting algorithm known as heapsort.

Algorithm 6B
Far the secand algorithim, we return 1o the original problem and find the kth largest element.
We use the idea from algorithm 1B. At any point in titne we will maintain a set S of the
ke largest elements. Afer the first k elements are read, when a new element is read it is
compared with the kth largest element, which we denote by Si. Notice that Sy, is the smallest
element in 5. If the new element is larger, then it replaces Sy in §. § will then have a new
smallest element, which may or may not be the newly added element. At the end of the
mput, we find the smallest element in § and return it as the answer.

This is essentially the same algorithm described in Chapter 1. Here, however, we will
use a heap to implement S. The first k elements are placed into the heap in total time O(k)
with a call to bui1dHeap. The time to precess each of the remaining elements ts O(1), to test
if the element goes into S, plus Q(log k), to delete S, and insert the new element if this is
necessary. Thus, the total time is O(k + N — k) logh) = O(N logh). This algorithm alsc
gives a bound of @(N log N) {or finding the median.

In Chapter 7, we will see how to solve this problem in O(N) average time. In Chap-
ter 10, we will see an elegant, albeit impracticat, algorithm to solve this problem in O(N)
worst-case time.

6.4.2. Event Simulation

In Section 3.+.3, we described an important queuing problem. Recalt that we have a systern,
such as a bank, where customers arrive and wait in a line until one of k tellers is available.
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Customer arrival is governed by a probability distribution function, as is the service tire
(the amount of time to be served once a teller is available). We are interested in statistics
such as how long on average a customer has to wait or how long the line might be,

With certain probability distributions and vatues of &, these answers can be computed
exactly. However, as k gets larger, the analysis becomes considerably more difficult, so it is
appealing to use a computer 1o simulate the operation of the bank. In this way, the bank
officers can determine how many telters are needed to ensure reasonably smooth service,

A simulation consists ol processing events. The two events here are (1) a customer
arriving and (b} a customer departing, thus freeing up a telter.

We can use the probability functions to generate an input stream consisting of ordeved
pairs of arrival time and service time for each customer, sorted by arrival time. We do not
need to use the exact time of day. Rather, we can use a quantum unit, which we will refer
to as a tich.

One way to do this simulation is to start a simulation clock at zero ticks, We then
advance the clock one tick at a time, checking to see if there is an event. [f there is, then we
process the event(s) and compile statistics. When there are no customers left in the input
stream and all the tellers are free, then the simulation is over.

The problem with this simulation strategy is that its running time dees not depend
ont the number of customers or events (there are two events per customer), but instead
depends on the number of ticks, which is not really part of the input. To see why this is
important, suppose we changed the clock units to milliticks and multiplied all the times
in the input by 1,000. The result would be that the simulation would take 1,000 times
longer!

The key to avoiding this problem is to advance the clock to the next event time at each
stage. This is conceptually easy to do. At any point, the next event that can occur is either
(a) the next customer in the input file arrives ot (b) one of the customers at a teller leaves.
Since all the times when the events will happen are available, we just need to find the event
that happens nearest in the future and process that event.

If the event is a departure, processing includes gathering statistics for the departing
customer and checking the line (queue) to see whether there is another customer wait-
ing. 1f so, we add that customer, process whatever statistics are required, compute the
time when that customer will leave, and add that departure to the set of events waiting to
happen.

If the event is an arrival, we check for an available teller. If there is none, we place the
arrival on the line {queue); otherwise we give the customer a teller, compute the customers
departure time, and add the departure to the set of events waiting to happen,

The waiting line for customers can be implemented as a queue. Since we need to find
the event nearest in the future, it is appropriate that the set of departures waiting to happen
be organized in a priority queue. The next event is thus the next arrival or next departure
(whichever is sooner); both are easily available.

It is then straightforward, although posstbly time-consuming, to write the simulation
routines. [f there are C customers {and thus 2C events) and k tellers, then the running time
of the simulation swould be O(C log(h + 1))* because computing and processing each event
takes O(log H), where H == k + 1 is the size of the heap.

“We use O(C log(k + 1)) instead of O(C log k) Lo avoid confusion for the bt = | case,
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Figure 6.19 A d-heap

0.5. d-Heaps

Binary heaps ate se simple that they are almost always used when prority queues are
needed. A simple generalization is a d-heap, which is exactly like a binary heap except
that all nodes have d children (thus, a binary heap is a 2-heap).

Figure 6.19 shows a 3-heap. Netice that a d-heap is much shallower than a binary heap,
improving the running time of inserts to O(log; N). However, for large d, the deleteMin
operation is more expensive, because even though the tree is shallower, the minimum of
d children must be found, which takes d —~ 1 comparisons using a standard algorithm.
This ratses the time for this operation to O(d log; N). If d is a constant, both running times
are, of course, O(log N). Although an array can still be used, the multiplications and divi-
sions to find children and parents are now by d, which, unless d is a power of 2, seriously
increases the running time, because we can no longer implement division by a bit shilt.
d-heaps are interesting in theory, because there are many algorithms where the number of
insertions is much greater than the number of deleteMins (and thus a theoretical speedup
is possible), They are also of interest when the priority queue is oo large to fit entirely
in main memary. In this case, a d-heap can be advantageous in much the same way as
B-trees, Finally, there is evidence suggesting that 4-heaps may outperform binary heaps in
practice.

The most glaring weakness of the heap implementation, aside {rom the inability to per-
form finds, is that combining two heaps into one is a hard operation. This extra operation
is known as a merge, There are quite a few ways of implementing heaps so that the running
time of a merge is O(log N). We will now discuss three data structures, of various complex-

ity, that support the merge operation efficienily We will defer any complicated analysis until
Chapter 11.

6.6. Leftist Heaps

[t seems difficult to design a data structure that efficiently supports merging (that is, pro-
cesses a merge in O(N) time) and uses only an array, as in a binary heap. The reason for
this is that merging would seem to require copying one array into another, which would



6.6, LerTisT Heaps

take O(N) time for equal-sized heaps. For this reasen, all the advanced data structures that
support eificient merging require the use of a linked data structure. In practice, we can
expect that this wili make all the other operations slower.

Like a binary heap, a leflist heap has both a structural property and an ordering property.
Indeed, a leftist heap, like virtually all heaps used, has the same heap-order property we
have already seen. Furthermore, a leftist heap is also a binary tree. The only dilference
between a leftist heap and a binary heap is that leftist heaps are not perfectly balanced, but
actually attempt te be very unbalanced.

6.6.1. Leftist Heap Property

We define the null path length, npl(X), of any node X 10 be the length of the shortest path
from X 10 a node without two children. Thus, the npl of a node with zero or one child is 0,
while npl{nul1) = —1. Inthe tree in Figure 6.20, the null path lengths are indicated inside
the tree nodes.

Notice that the null path length of any node is 1 more than the minimum of the nult
path lengths of its children. This applies to nodes with less than 1wo children because the
null path length of nultis —1,

The leftist heap property is that for every nede X in the heap, the null path length of
the left child is at least as large as that of the right child. This property is satisfied by only
one of the trees in Figure 6.20, namely, the tree on the left. This property actually goes out
of its way Lo ensure that the tree is unbalanced, because it clearly biases the tree to get deep
toward the left. Indeed, a tree consisting of a long path of left nodes is possible (and actually
preferable 1o facilitate merging)-—hence the name leftist heap.

Because leftist heaps tend to have deep left paths, it follows that the right path ought to
be short. Indeed, the right path down a leftist heap is as short as any in the heap. Otherwise,

there would be a path that goes through some node X and takes the left child. Then X would
violate the leftist property,

THEOREM 6.2.
Aleftist tree with v nodes on the right path must have at least 27 — 1 nodes.

Figure 6.20 Null path lengths for two trees; only the left tree is lefrist
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PROOF:
The proof is by induction. Il ¥ = 1, there must he at least one tree node. Otherwise,
suppose that the theorem is true for 1, 2, ..., r. Constder a leftist tree with r -+ 1 nodes

on the right path. Then the root has a right subtree with » nodes on the right path, and
aleft subtree with at least r nodes on the tight path {otherwise it would 1ot be leftist).
Applying the inductive hypuothesis to these subtrees yields a minimum of 2' — 1 nodes
in each subtree. This plus the raot gives at least 2' ¥ — 1 nodes in the tree, proving the
thecrem.

From this theotem, it follows immediately that a leftist tree of N nodes has a right path
containing at most [logtN + 1] nodes. The general idea for the leftist heap operations is
to perform all the work on the right path, which is guaranteed 10 he short. The only tricky
part is that performing inserts and merges on the right path could destroy the leftist heap
property. it turns out to be extremely easy to restore the property.

6.6.2. Leftist Heap Operations

The fundamental operation on leftist heaps is merging. Notice that insertion is merely a
special case of merging, since we may view an insertion as a merge of a one-nede heap with
alarger heap. We will first give a simple recursive solution and then show how this might
be done nonrecursively. Our input is the two leftist heaps, H) and Hs, in Figure 6.21. You
should check that these heaps really are leftist. Notice that the smallest elements are at the
roots. In addition to space for the data and left and right references, each node will have an
entry that indicates the null path length.

Il either of the two heaps is empty, then we can return the other heap. Otherwise, to
merge the two heaps, we compare their roots. First, we recursively merge the heap with the
larger root with the right subheap of the heap with the smaller root. In our example, this
means we recursively merge H, with the subheap of H) rovted at 8, obzaining the heap in
Figure 6.22.

Since this tree is formed recursively, and we have not yet finished the description of
the aigorithm, we cannot at this point show how this heap was obtained. However, it is
reasonable to assume that the resulting tree is a leftist heap, hecause it was obtained via a
recursive step. This is much like the inductive hypothesis in a proof by induction. Since we
can handle the base case {which occurs when one tree is empty), we can assume that the
recursive step works as long as we can finish the merge: this is rule 3 of recursion, which
we discussed in Chapter 1. We now make this new heap the right child of the root of H,
(see Figure 6.23).

Although the resulting heap satisfies the heap-order property, it is not leftist because
the left subtree of the root has a null path length of 1 whereas the right subtree has a null
path length of 2. Thus, the leftist praperty is violated at the root, However, it is easy to see
that the remainder of the tree must be lefiist. The right subtree of the root is lefiist, because
of the recursive step. The left subtree of the root has not been changed, so it too must still
be leftist. Thus, we need only to fix the root. We can make the entire tree leftist by merely
swapping the root’s left and right children (Figure 6.24) and updating the null path length—
the new null path length is 1 plus the null path length of the new right child—completing
the merge. Notice that if the null path tength is not updated, then all null path lengths will
be O, and the heap will not be lefuist but merely random. In this case, the algorithm will
work, but the time bound we will claim will no longer be valid.
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Figure .21 Two leftist heaps H) and I,
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Figure 6.23 Result of attaching leftist heap of previous figure as Hy's right child
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Figure 6.24 Result of swapping children of H, 5 root

The description ot the algorithm translates directly into code. The nede class (Fig, 6.25)
is the same as the binary tree, except that it is augmented with the npl (null path length)
field. The lefrist heap stores a reference to the root as its daia member. We have seen in
Chapter 4 that when an element is inserted into an empty binary tree, the node referenced
by the root will need to change. We use the usual technique of implementing private
recursive methods to do the merging. The class skeleton is also shown in Figure 6.25.

The two merge routines (Fig. 6.26) are drivers designed to remove special cases and
ensure that H) has the smaller root. The actual merging is performed in mergel (Fig, 6.27).
The public merge method merges rhs into the controlling heap. rhs becomes empty. The
alias test in the public method disallows h.merge(h).

The time 10 perform the merge is proportional to the sum of the length of the right
paths, because constant work is performed at each node visited during the recursive calls,
Thus we obtain an O(log N time bound 0 merge two leftist heaps. \We can also perform this
operation nonrecursively by essentially performing two passes. In the first pass, we create
a new tree by merging the right paths of both heaps. To do this, we arrange the nodes on
the right paths of Hy and H, in sorted order, keeping their respective left children. In our
exarnple, the new right path is 3, 6, 7, 8, 18 and the resulting tree is shown in Figure 6.28.
A second pass is made up the heap, and child swaps are performed at nodes that violate the
leftist heap property. In Figure 6.28, there is a swap at nodes 7 and 3, and the same tree as
before is obtained. The nonrecursive version is simpler to visualize but harder to code. We
leave it to the reader to show that the recursive and nonrecursive procedures do the same
thing.

As mentioned abave, we can carry out insertions by making the item to be inserted a
one-node heap and performing a merge. To perform a deleteMin, we merely destroy the
root, creating two heaps, which can then be merged. Thus, the time to perform a deleteMin
is O(log N). These 1wa routines are coded in Figure 6.29 and Figure 6.30.

Finally, we can build a leftist heap in O(N) time by building a binary heap {chviously
using a linked implementation}. Aithough a binary heap is clearly lefiist, this is not neces-



¢lass LeftHeapNode
{
// Constructors
LeftHeapNode( Comparable theElement )

this{ theElement, null, null };
1

LeftHeapNede( Comparable theElement, LeftHeapNode ¥t, LeftHeapNode rt )
{
element
Teft
right
npl

theElement;
1t;

rt;

0;

7 S T 1}

// Friendly data; accessihle by other package routines
Comparable element: // The data in the node
LeftHeapNode lefr; // Left child
LeftHeapNede right; // Right child
int npl; // null path length

}

public class LeftistHeap
{
public LeftistHeap( )}
{ /* See online code %/ }

public void merge( LeftistHeap rhs )
{ /* Figure 6.26 */ }
pubtic void insert( Comparable x )
{ /* Figure 6.29 */ }
public Comparable findMin{ )
{ /* See online code */ }
public Comparable delteteMin( )
{ /* Figure 6,30 #/ }

public boolean isEmpty( )

{ /% See online code */ }
public boclean isFuli{ )

{ /* See online code */ }
public void makeEmpty( )

{ /* See online code */ }

private LeftHeapNode root; // root

private static LeftHeapNode merge( LeftHeapNode hl, LeftHeapNode h2 )
{ /* Figure 6.26 */ }

private static LeftHeaphode mergel( LeftHeapNode hl, LeftHeapNode hZ )
{ /* Figure 6.27 */ }

private static void swapChildren{ LeftHeapNode t )
{ /* See online code */ }

}
Figure 6.25 Leftist heap type declarations
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Jik

* Merge rhs into the priority queue,

* rhs becomes empty. rhs must be different from this.
* @param rhs the other leftist heap.

*/
public void merge( LeftistHeap rhs )

{

if( this == rhs ) // Avoid aliasing problems
return;

reot = merge( root, rhs.root );
rhs.root = nulty

}
JAL

* Internal static method to merge twoe roots.
* Deals with deviant cases and calls recursive mergel.

=f
private static LeftHeapNode merge( LeftHeapNode hi, LeftHeapNode h2 )
{
if( ht == null )
return h2;
if( h2 == null )
return hi;
if( hl.element.compareTo{ h2.element )} < 0 )
return mergel( hi, h2 );
else
return mergel( h2, hl ):
}

Figure 6.26 Driving routines for metging leftist heaps

/fn’.'
* Internal static method to merge two roots.
* Assumes trees are not empty, and hl's root contains smallest item.

#f
private static LeftHeapNode mergel( LeftHeapNode hl, LeftHeapNode hZ )
{
iF( hl.left == nu11 ) // Single node
hl,left = h2: // Other fields in hl are already accurate
else
{
hl.right = merge( hl.right, h2 );
if( hl.teft.npl < hl.right.npl )
swapChildren{ hi };
hl.npl = hi.right.npl + 1;
}

return hil;

}

Figure 6.27 Actual routine to merge leftist heaps
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10

Figure 6.28 Result of merging right paths of Hy and H,

/:‘ri:
* Insert into the priority queue, maintaining heap order.
* dparam x the item to insert.

5/
public void insert( Comparable x )}

{
}

Figure 6,29 Insertion routine for leftist heaps

root = merge( new LeftHeapNede( x ), root );

/’.'l'f: .
* Remove the smallest item from the priority queue.
* @return the smallest item, or null if empty.

%

public Comparable deleteMin{ )

{
if{ iskEmpty( ) )

return nult;

Comparable minItem = root.element;
root = merge( root.left, root.right );
return minItem;

}

Figure 6,30 deleteMin routine lor leftist heaps
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sarily the best solution, because the heap we obtain is the worst possible leftist heap. Fur-
thermore, traversing the tree in reverse-level order is not as easy with links, The buildHeap
effect can be obtained by recursively building the left and right subtrees and then percolat-
ing the root down. The exercises contain an alternative solution.

6.7. Skew Heaps

A skew heap s a self-adjusting version of a lefiist heap that is incredibly simple to imple-
ment. The relationship of skew heaps to leftist heaps is analogous to the relation between
splay trees and vt trees. Skew heaps are binary trees with heap order, but there is no struc-
tural constraint on these trees. Unlike leftist heaps, no information is maintained about
the null path length of any node. The right path of a skew heap can be arbitrarily long at
any time, so the worst-case running time of all operations is O(N). However, as with splay
trees, it can be shown (see Chapter 11) that for any M consecutive operations, the total
worst-case running time is O(M log N). Thus, skew heaps have O(log N) amortized cost per
operation,

As with leftist heaps, the fundamental operation on skew heaps is merging. The merge
routine is once again recursive, and we perform the exact same operations as before, with
one exception. The difference is that for leftist heaps, we check to see whether the left and
right children satisfy the leftist heap structure property and swap them i they do nat, For
skew heaps, the swap is unconditional; we always do it, with the one exception that the
largest of all the nodes on the right paths does not have its children swapped. This one
exception is what happens in the natural recursive implementation, so it is not really a
special case at all. Furthermore, it is not necessary Lo prove the bounds, but since this node
is guaranteed not te have a right child, it would be silly to perform the swap and give it one.
(In our example, there are no children of this node, so we do not worry about it.) Again,
suppose our input is the same two heaps as before, Figure 6.31.

If we recursively merge H, with the subheap of H, rooted at 8, we will get the heap in
Figure 6.32.

(3)
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Figure 6,31 Two skew heaps H; and H;
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Flgure 6,32 Result of merging H; with Hy's right subheap

Again, this is done recursively, so by the third rule of recursion (Section 1.3) we need
not worry about how it was obtained. This heap happens to be leftist, but there is no
guarantee that this is always the case. We make this heap the new left child of Hy, and the
old left child of Hy becomes the new right child (see Fig, 6.33).

The entire tree is leftist, but it is easy to see that that is not always tnie: [nserting 15
inte this new heap would destroy the leftist property.

We can perform all operations nonrecursively, as with leftist heaps, by merging the
right paths and swapping left and right children for every node on the right path, with the
exception of the last. After a few examples, it becomes clear that since all but the last node
on the right path have their children swapped, the net effect is that this becomes the new

Figure 6.33 Result of merging skew heaps Hy and H;
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left path (see the preceding exampte to convince yoursel!), This makes it very easy to merye
1wo skew heaps visually *

The tmplementation of skew heaps is left as a (trivial) exercise. Note that because a right
path could be long, a recursive implementation could fail because of lack of stack space,
even though performance would otherwise be acceptable, Skew heaps have the advantage
that no extra space is required to maintain path lengths and no tests are required to de-
termine when to swap children. It is an open problem to determine precisely the expected
right path length of both leftist and skew heaps (the latter is undeubtedly more difficuit).
Such a comparison would make it easier 1o determine whether the slight loss of balance
information is compensaied by the fack of testing.

6.8. Binomial Queues

Although both leftist and skew heaps support merging, insertion, and deleteMin all ef-
fectively in O(log N'} time per operation, there is room for improvement because we know
that binary heaps support insertion in constant average time per operation. Binomial queues
support all three operations in O(log N) worst-case time per operation, but insertions take
constant time on average.

6.8.1. Binomial Queue Structure

Binomial queues differ from all the priority queue implementations that we have seen in
that & binomial queue is not a heap-ordered tree but rather a collection of heap-ordered
trees, known as a forest. Each ol the heap-ordered trees is of a constrained form known as a
binomial tree {the reason for the name will be obvious later). There is at most one binomial
tree of every height. A binomial tree of height 0 is a one-node tree; a binemial tree, By, of
height k is formed by attaching a binomial tree, B,._, to the roet of another binomial tree,
Br.—. Figure 6.34 shows binomial trees By, By, B, B3, and By,

From the diagram we see that a binomial tree, By, consists of a reot with children By,
Bi,..., By—:. Binomial trees of height k have exactly 2* nodes, and the number of nodes at
depth d is the binomial coefficient (fi) If we impose heap order on the binomial trees and
allow at most one binomial tree of any height, we can uniquely represent a priority queue
of any size by a collection of binomial trees. For instance, a priority queue of size 13 could
be represented by the forest Bs, By, By. We might write this representation as 1101, which
not only represents 13 in binary but also represents the fact that Bs, B, and By are present
in the representation and By is not.

As an example, a priority queue of six elements could be represented as in Figure 6.35.

6.8.2. Binomial Queue Operations

The minimum element can then he found by scanning the roots of all the trees. Since there
are at most log N different trees, the minimum can be found in Olog N) time. Alternatively,

“Thns 1s not exactly the same a3 the recursive mplementation thut yrelds the same time hounds). H we only swap
children for nodes on the right path that are above the peint where the meraing of nght paths rerminated due ta
exhaustion of one heap’s right path, we get the same result a5 the recursive versian,
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By Bl Bg B_}
B,

Figure 6.34 Binomial trees By, By. B;. By, and B;

Figure 6.35 Binomial queue H, with six elements

we can maintain knowledge of the minimum and perform the operation in O(1) time, if
we remember to update the minimum when it changes during other operations.

Merging two binomial queues is a conceptually easy operation, which we will describe
by example. Consider the two binomial queues, H) and H;, with six and seven elements,
respectively, pictured in Figure 6.36.

The merge is petformed by essentially adding the two queues together, Let Hy be the
new binomial queue. Since H) has no binomial tree of height 0 and H; does, we can just use
the binomial tree of height 0 in H; as part of H3. Next, we add binomial trees of height 1.
Since both Hy and H; have binomial trees of height 1, we merge them by making the larger
root a subtree of the smaller, creating a binomial tree of height 2, shown in Figure 6.37.
Thus, Hy will not have a binomial tree of height 1. There are now three binomial trees of
height 2, namely. the original trees of H, and H; plus the tree formed by the previous step.
We keep ene binomial tree of height 2 in Hs and merge the other two, creating a binomial
rree of height 3. Since H) and H; have no trees of height 3, this tree becomes part of H;
and we are finished. The resulting binomial queue is shown in Figure £.38,
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Figure 6.36 Two binomial queues Hy and H,
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Figure 6.37 Merge of the two By trees in Hy and H,
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Figure 6,38 Binomial queue H;: the result of merging H; and H,

Since merging two binomial trees takes constant time with almost any reasonable im-
plementation, and there are O(log N) binomial trees, the merge takes O(log N) time in the
worst case. To make this operation efficient, we need to keep the trees in the binomial queue
sarted by height, which is certainly a simple thing to do.

Insertion is just a special case of merging, since we merely create a one-node tree and
perform a merge. The worst-case time of this operation is likewise O{log N). More pre-
cisely, if the priority queue into which the element is being inserted has the property that
the smallest nonexistent binomial tree is B;, the running time is proportional to i -+ 1. For
example, Hy (Fig, 6.38)is missing a binomial tree of height 1, so the insertion will terminate
in two steps. Since each tree in a binomial queue is present with probability §, it follows
that we expect an insertion to terminate in two steps, so the average time is constant. Fur-
thermore, an analysis will show that performing N inserts on an initially empty binomial
queue will take O(N} worst-case time. Indeed, it is possible to do this operation using only
N — 1 comparisons; we leave this as an exercise.

As an example, we show in Figures 6.39 through 6.45 the binomial queues that are
formed by inserting 1 through 7 in order. Inserting 4 shows off a bad case. We merge 4 with
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Figure 6.39 Alfter 1 is inserted

o

Figure 6.40 After 2 is inserted
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Figure 6.41 Alter 3 is inserted

Figure 6.42 After 4 is inserted
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Figure 6.43 After 5 is inserted

Figure 6.44 After 6 is inserted

00

Figure 6.45 After 7 is inserted

6.8. BinOMIAL Queves
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By, obtaining a new tree of height 1. We then merge this tree with By, obtaining a tree of
height 2, which is the new priority queue. We count this as three steps (two tree merges
plus the stlopping case). The next insertion after 7 is inserted is another bad case and would
require three tree merges.

A deleteMin can be performed by first finding the binomial tree with the smallest root.
Let this tree be By, and let the original priority queue be H. We remove the binomial tree
By, from the forest of trees in H, forming the new binomial queue H'. We also remove the
root of By, creating binomial trees By, By, . .., By—y, which collectively form priority queue
H". We finish the operation by merging H' and H".

As an example, suppose we perform a deleteMin on Hj, which is shown again in
Figure 6.46. The minimum root is 12, so we obtain the two priority queues H' and H" in
Figure 6.47 and Figure 6.48. The binomial queue that results from merging H' and H" is
the final answer and is shown in Figure 6.49.

H3:® @ @
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Figure 6.46 Binomial queve Hy
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Figure 6,47 Binomial queue H', containing all the binomia! trees in H; except Bs

Figure 6.48 Binomial queue H": By with 12 removed
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Figure 6.49 Result of applying deleteMin to H;
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For the analysis, note first that the deleteMin cperation breaks the original binomial
(uene into two. It takes O(log N time to find the tree containing the minimurm element
and to create the quenes H and H". Merging these two queues takes O(log N) time, so the
entire deleteMin operation takes O(log N) time.

6.8.3. Implementation of Binomial Queues

The deleteMin eperation requires the ability to find all the subtrees of the raot quickly, so
the standard representation of generat trees is required: The children of each nade are kepr
inn a linked list, and each node has a reference to its first child (if any). This operation also
requires that the children be ordered by the size of their subtrees. We also need 1o make
sure that it is easy to merge two trees, When two trees are merged, one of the trees is added
as a child to the other. Since this new tree will be the largest subtree, it makes sense to
maintain the subtrees in decreasing sizes. Only then will we be able to merge two binomial
trees, and thus two binomial queues, efficiently. The binemial queue will be an array of
binomial trees.

To summarize, then, each node in a binomial tree will contain the data, fivst child, and
right sibling. The children in a binomual tree are arranged in decreasing rank.

Figure 6.51 shows how the binomial queue in Figure 6.50 is represented. Figure 6.52
shows the type declarations for a node in the binomial tree, and the binomial gueue class
skeleton.

In order to merge two binomial queues, we need a routine to merge two binomial trees
of the same size. Figure 6.53 shows how the links change when two binomial trees are
merged. The code to do this is simple and is shown in Figure 6.54.

We provide a simple implementation of the merge routine. Hy is represented by the
current object and H, is represented by rhs. The routine combines H; and Hy, placing the
result in Hy and making H, empty. At any peint we are dealing with trees of rank i. t1 and

O 3) (1)
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Figure .50 Binomial queue H; drawn asa forest
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Figure 6.51 Represemation of binomial queue H;




class BincmiatNode
{
// Constructors
BinomialNode( Comparable theflement h]
{ this( theElement, null, nuil ); }

BinomialNode{ Comparable theElement, BinomialNode 1t, BinomialNode nt )
{

element
leftChild
nextSibling

theElement;
Tt;
nt,;

}

// ¥Friendly data; accessible by other package routines
Comparable  element; // The data in the node
BinomialNode leftChild: // Left child
BinomialNode nextSibling; // Right child

}

public class BinomialQueue
{
public BinomialQueue( )
{ /* See online code */ }
public void merge( BinomialQueue rhs ) throws Overflow
{ /* Figure 6.55 */ }
public void insert{ Comparable x ) throws Overflow
{ /* See online code */ }
pubtic Comparable findMin( )
{ /* See online code */ }
pubtic Comparable deleteMin( )
{ /* Figure 6.56 */ }

public boolean isEmpty( )

{ /* See online code */ }
public booTean isFull( )

{ /* See online code */ }
public void makeEmpty( )

{ /% See online code */ }

private static final int MAX_TREES = 14;

private int currentSize; // # items in priority queue
private BinomiaTNode [ ] theTrees; // An array of tree roots

private static BinomialiNode combineTrees( BinomialNode ti,

BinomiaiNode t2 )
{ /* Figure 6.54 */ }

private int capacity( )
{ /* See online code %/ }
private int FindWinIndex{ )
{ /* See online code */ }

214 .. Figure 6,52 Binomial queue class skeleton and node definition
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Figure 6.53 Merging two binomial trees

/-.Hl
* Return the resuit of merging equal-sized t1 and t2.
*/
private static BinomialNode combineTrees( BinomiaTNode t1,
BinomialNode t2 )

{
if( tl.element, compareTo( t2.element I >0)
return combineTrees( t2, t1 );
t2.nextSibling = t1.leftChild:
tl.leftChild = 12,
return tl;
}

Figure 6.54 Routine to merge two equal-sized binomial trees

t2 are the trees in H; and H,, respectively, and carry is the tree carried from a previous step
{it might be nu11). Depending on each of the eight possible cases, the tree that results for
rank i and the carry tree of rank i + 1 is formed. This process proceeds from rank O to the
last rank in the resubting binomial queue. The code is shown in Figure 6.55,

The deleteMin routine for binomial queues is given in Figure 6.56.

We can extend binomial queues to support some of the nonstandard operations that
binary heaps allow, such as decreaseKey and delete, when the position of the affected
element is known. A decreaseKey is a percotatelp, which can be performed in O(log N)
time if we add a field to each node that stores a parent link. An arbitrary delete can be
performed by a combination of decreaseKey and deleteMin in O(log N} time,

SUMMARY

In this chapter we have seen various implementations and uses of the priority queue ADT.
The standard binary heap implementation is elegant because of its simplicity and speed.
It requires no links and only a constant amount of extra space, yet supports the priority
queue operations efficiently,

We considered the additional merge operation and developed three implementations,
each of which is unique in its own way. The leftist heap is a wonderful example of the power
of recursion. The skew heap represents a remarkable data structure because of the lack of
balance criteria. Its analysis, which we will perform in Chapter 11, is intetesting in its own
right. The binomial queue shows how a simple idea can be used 1o achieve a good time
bound.

We have also seen several uses of priority queues, ranging from operating systems
scheduling to simulation. We will see their use again in Chapters 7, 9, and 10.




Figure 6,55 Routine to merge two priority queues

/*:&

* Merge rhs into the priority queue,

* rhs becomes empty. rhs must be different from this.

* @param rhs the other binomial queue.

* @exception Overflow if result exceeds capacity.

wf
public void merge( BinomialQueue rhs ) throws Overflow
{

if( this == rhs ) // Avoid aliasing problems
return;

if( currentSize + rhs.currentSize > capacity( ) )
throw new Overflow( }:

currentSize ¢= rhs.currentSize;

BinomiaiNode carry = null;
for(int i = 0, j = 1; j <= currentSize; i++, j*=2)
{
BinomialNode t1
BinomialNade t2

theTrees[ 1 ];
rhs.theTrees[ i 1:

int whichCase = t1 == nul1 2 0 : 1;
whichCase += t2 == nul1 7 0 : 2;
whichCase += carry == nu11 2 0 ; 4;

switch( whichCase )
{
case 0: /* No trees */
case 1: /* Only this */
break;
case 2: /* Only rhs */
theTreesf 1 ] = t2;
rhs.theTreesf 1 ] = null;
) break;
5 case 4: /* Only carry */
5 theTrees[ 1 ] = carry;
carry = null;
break;
case 3: /* this and rhs #/
carry = combineTrees( t1, t2 )};
theTrees{ i ] = rhs.theTrees[ 1 ] = null;
break;
case 5; /* this and carry */
carry = combineTrees{ t1, carry );
theTrees[ i ] = null;
break;
case 6! /* rhs and carry */
carry = combineTrees( t2, carry );
rhs.theTrees[ 1 ] = null;
break;

216 (continues)




{contined )
case 7; /% All three */
theTrees[ 1 ] = carry;
carry = combineTrees{ tI, t2 );
rhs.theTrees[ 1 ] = null;
break;

t

for( int k = 0; k < rhs.theTrees.length; k++ )
rhs.theTrees{ k } = null:
rhs.currentSize = 0:

}

Figure 6.55 Routine to merge two prionty queues

Figure 6.56 deleteMin for binomial queues, with findMinIndex method

JEE
* Remove the smallest item from the priority queue.
* @return the smallest item, or null, if empty.

5/
public Comparable deleteMin( )
{
if( isEmpty( )} )
return null;
int minIndex = findMinIndex( };
Comparabte minItem = theTrees{ minIndex ].element;
BinomialNode deltetedTree = theTrees[ minIndex 1.leftChild:
// Construct H''
BinomialGueue deletedQueue = new BinomialQueue( );
deletedQueue.currentSize = ( 1 << minIndex ) - 1;
for( int j = minIndex - 1; j »= 0; j-- )
deletedQueue. theTrees[ § ] = deletedTree;
deletedTree = deletedTree.nextSibling;
deletedQueue, theTrees[ j J.nextSibling = null;
}
// Construct H'
theTrees[ minIndex ] = null;
currentSize -= deletedQueue.currentSize + 1;
try
{ merge( deletedQueue ); }
catch( Overflow e ) { }
return minltem;
}

(continues)
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(continued)

/‘.‘r*

* Find index of the tree containing the smallest item in the
* priority queue. The priority queue must not be empty.

* @return the index of the tree containing the smallest item,

=
private int findMinIndex{ )}
{
int 1
int minIndex;
for( i = 0; theTrees[ 1 § == null; i++ )
for( minIndex = i; i < theTrees.length; i++ )
if{ theTrees[ i } != null && theTrees{ i J.element.
compareTo{ theTrees[ minIndex J.element ) < 0 )
minIndex = 1;
return minIndex;
}

Figure .56 deleteMin for binomial queues, with fird4inIndex method

B R ettt b e

6.1 Can both insert and find¥in be implemented in constant time?
6.2 a. Show the result of inserting 10, 12, 1,14, 6,5,8,15,3,9,7,4, 11, 13, and 2, one
at a time, into an initially empty binary heap,
b. Show the result of using the linear-time algorithm to build a binary heap using the
same input,

6.3 Show the result of performing three deleteMin operations in the heap of the previous
¢xercise.

64 A complete binary tree of N elements uses array positions 1 to N. Suppose we try to
use an array representation of 2 binary tree that is not complete. Determine how large
the array must be for the following;

a. a binary tree that has two extra levels (that s, it is very slightly unbalanced)
b. a binary tree that has a deepest node at depth 2 log N
c. abinary tree that has a deepest node at depth 4.1log N
d. the worst-case binary tree
6.5 Rewrite the BinaryHeap class using the negInf sentinel.
6.6 How many nodes are in the large heap in Figure 6.13?

6.7 a. Prove that {or binary heaps, buildHeap does at most 2N — 2 comparisons between
elements.

b. Show that a heap of eight elements can be constructed in eight comparisons be-
tween heap elements.

**¢. Give an algorithm to build a binary heap in BN + O(log N) element compatisons.
g Ty heapin -3 g p



Exercises

6.8 Show the following regarding the maximum item in the heap:
a. Tt must be at one of the leaves.
b. There are exactly [N/2] leaves.
c. Every leal must be examined 1o find it.

46.9 Show that the expected depth of the kth smallest element in a large complete heap
(you may assume N = 2" — 1) is bounded by logk.

6.10%a. Give an algorithm to find all nodles less than some value, X, in a binary heap. Your
algorithm should run in O(K), where K is the number of nodes output.
b. Does your algorithm extend to any of the other heap structures discussed in this
chapter?
*c. Give an algorithm that finds an arbitrary item X in a binary heap using at most
roughly 3N/4 comparisons.
**6.11 Propose an algorithm to insert M nodes into a binary heap on N elements in
O{M + log N log log N) time. Prove your time bound.
6.12 Write a pragram to take N elements and do the following:
a. Insert them into a heap one by one.
b. Build a heap in linear time,

Compare the running time of both algerithms for sorted, reverse-ordered, and ran-
dom inputs,

6.13 Each deleteMin operation uses 2 log N comparisons in the worst case.

a. Propose a scheme so that the deleteMin operation uses only log N + loglogN +
O(1) comparisons between elements. This need not imply less data movement.

**b. Extend your scheme in part (a) so that enly log N + logloglog N + 0(1) compar-
isons are performed,

**c. How far can you take this idea?
d. Do the savings in comparisons compensate for the increased complexity of your
algorithm?
6.14 If a d-heap is stored as an array, for an entry located in position i, where are the
parents and children?

6.15 Suppose we need to perform M percolateUps and N deleteMins on a d-heap that
initialty has N elements.

a, What is the total running time of all operations in terms of M, N, and 4?
b. Ifd = 2, what is the running time of all heap operations?
c. Ifd = O(N), what is the rotal running time?

*d. What choice of d minimizes the total running time?

6.16 Suppose that binary heaps are represented using explicit links. Give a simple algo-
rithm to find the tree node that is at implicit position i.

6.17 Suppose that binary heaps are represented using explicit links. Consider the problem
of merging binary heap 1hs with rhs. Assume both heaps are full complete trees,
containing 2' — 1 and 2" — 1 nodes, respectively.

a. Give an O(log N) algorithm to merge the two heapsif I = r.
b. Give an O(log N) algorithm to merge the two heaps if || — 1| = 1.
c. Give an O(log” N) algorithm to merge the two heaps regardless of [ and r.

212
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Figure 6.57 Min-max heap

6.18 A min-max heap is a data structure that supports both deleteMin and deleteMax in
O(log N per operation. The siructure is identical to a binary heap, bug the heap-order
property is that for any node, X, at even depth, the element stored at X is smaller than
the parent but larger than the grandparent (where this makes sense), and for any nade
Xatodd depth, the element stored at X is larger than the parent but smaller than the
grandparent. See Figure 6.57.

a. How do we find the minimum and maximum elements?
“b. Give an algorithm to insert a new node into the min-max heap.
*c. Give an algorithm to perform deleteMin and deleteMax.
*d. Can you build a min-max heap in linear time?

**e. Suppose we would like to support deleteMin, deleteMax, and merge. Propose a
data structure to support alt operations in O(log N} time.

6,19 Meige the two leftist heaps in Figure 6,58,
6.20 Show the result of inserting keys 1 to 15 in order into an initially empty leftist heap.

6.21 Prove or disprove: A perfectly balanced tree forms if keys 1 to 25 — 1 are inserted in
order into an initially empty leftist heap.

6.22 Give an example of input that generates the best leftist heap.

Figure 6.58 Input for Exercises 6,19 and 6.26
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6.23 a. Can leftist heaps efficiently support decreaseKey?

b, What changes, it any (if possible), are required to do this?

.24 One way 10 delete nodes from a known position in a lefiist heap is 1o use a lazy
strategy. To delete a node, merely mark it deleted. When a findMin or deleteMin is
performed, there is a potential problem if the root is marked deleted, since then the
node has to be actually deleted and the real minimum needs to be found, which may
involve deleting other marked nodes. In this strategy, deletes cost one unit, but the
cost af a deleteMin or findMin depends on the number of nodes that are marked
deleted. Suppose that after a deleteMin or findMin there are & fewer marked nodes
than before the operation,

*a. Show how to perform the deleteMin in Ok log N) time.

**h. Propose an implementation, with an analysis to show that the time to perform the
deleteMin is O(k log(2N/A)).

6.25 Wecan perform buiTdHeap in linear time for leftist heaps by considering each element
as a one-node leftist heap, placing all these heaps on a queue, and performing the
following step: Until only one heap is on the queue, dequeue two heaps, merge them,
and enqueue the result,

a, Prove that this algorithm is O(N) in the worst case,

b, Why might this algorithm be preferable to the algorithm described in the text?
6.26 Merge the two skew heaps in Figure 6.58.
6.27 Show the result of inserting keys 1 to 15 in order into a skew heap.

6.28 Prove or disprove; A perfectly balanced tree {forms if the keys 1 to 25 — 1 are tnserted
in order into an initially empty skew heap.

6.29 A skew heap of N elements can be built using the standard binary heap algorithm.

Can we use the same merging strategy described in Exercise 6.25 for skew heaps to
get an O(N) running time?

©.30 Prove that a binomial tree By, has binomial trees By, By, ..., By— as children of the
root,

6.31 Prove that a binomial tree of height k has (';) nedes at depth d.
6.32 Merge the two binomial queues in Figure 6.59.

@3 @) (12
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Figure 6.59 Input for Exercise 6.32
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6.33 a. Show that N inserts into an initially empty binomial queue 1akes O(N) time in
the worst case,
b. Give an algerithim to build a binomial queue of N elements, using at most N — |
comparisons between elements.
*c. Propose an algerithm to insert M nodes into a binomial queue of N elemerss in
O(M + log N} worst-case time. Prove your hound.
6.34 \Vrite an efficient routine to perform insert using binomial quees. Do not call merge.
6.35 For the binomial queue:

a. Modify the merge routine to terminate merging if there are no trees left in H; and
the carry tree is null,

b. Modily the merge so that the smaller tree is always merged into the larger.

16,30 Suppose we extend binomial queues to allow at most two trees of the same height per
structure. Can we obtain O(1) worst-case time for insertion while retaining O(log N}
for the other operations?

6.37 Suppose you have a number of boxes, each of which can hold total weight ¢ and
items By, 1. 45, ..., iy, which weigh wy, wa, ws, ... wy, respectively. The object is to
pack all the items without placing more weight in any box than its capacity and using
as few boxes as possible, For instance, #f € = 35, and the items have weights 2, 2, 3,
3, then we can solve the problem with two boxes.

In general, this problem is very hard, and no efficient solution is known. Write
programs to implement efficiently the following approximation strategies:

a. Place the weight in the first box for which it fits (creating a new box if there is no
box with enough room). (This strategy and all that follow would give three boxes,
which is suboptimal.)

b. Place the weight in the box with the most room for it.

*c. Place the weight in the most filled box that can accept it without overflowing.
**d. Are any of these strategies enhanced by presorting the items by weight?

6.38 Suppose we want to add the decreaseAllKeys(A) operation to the heap repertoire.
The result of this operation is that all keys in the heap have their value decreased by an
amount A. For the heap implementaticn of your choice, explain the necessary modi-
fications so that all other operations retain their running times and decreaseAl1Keys
runs in O(1).

6.3% Which of the two selection algorithms has the better tirze bound?

R REN S s

The binary heap was first described in {28]. The linear-time algorithm for its construction
is from [14}.

The first description of d-heaps was in [19]. Recent results suggest that 4-heaps may
improve binary heaps in some circumstances [22]. Leftist heaps were invented by Crane
[11] and described in Knuth [21]. Skew heaps were developed by Sleator and Tarjan [24].
Binomial queues were invented by Vuillemin [27]; Brown provided a detailed analysis and
empirical study showing that they perform well in practice [4], if carefully implemented.

Exercise 6.7(b—c) is taken from {17]. Exercise 6.10(c) is from [6]. A method for con-
structing binary heaps that uses about 1.52N comparisens on average is described in [23].
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Figure 11.7 Skew heap—heavy nodes are 3,6, 7, 12, and 15

As an example, Figure 11.7 shows a skew heap. The nodes with values 15, 3,8, 12,
and 7 are heavy, and all other nodes are light,

The potential function we will use is the number of heavy nodes in the (collection) of
neaps. This seemns like a good choice, because a long right path will contain an inordinate
number of heavy nodes. Because nodes on this path have their children swapped, these
nodes wilt be converted to light nodes as a result of the merge.

THEQREM 11.2,
The amortized time to merge two skew heaps is O(log N3,

PROOF:

Let Hy and H; be the two heaps, with Nj and N; nodes respectively. Suppose the right
path of Hy has [| light nodes and h, heavy nodes, for a total of I + h;. Likewise, H;
has I; light and h, heavy nodes on its right path, for a total of 1, + &, nodes.

If we adopt the convention that the cost of merging two skew heaps is the total
number of nodes on their vight paths, then the actual time to perform the merge is
i + 1 + hy + hy. Now the only nodes whose heavy/light status can change are nodes
that are initially on the right path (and wind up on the left path), since no other nodes
have their subtrees altered. This is shown by the example in Figure 11.8.

i a heavy node is initially on the right path, then after the merge it must become
a light node. The other nodes that were on the right path were light and may or may

o

Figure 1.8 Change in heavy/light status afier a merge
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not become heavy, but since we are proving an upper bound, we will have to assume
the worst, which is that they become heavy and increase the potential. Then the net
change in the number of heavy nodes is at most }y + | 21— hy —hy. Adding the actual
time and the potential change (Equation (11.2)) gives an amortized bound of 2¢J; +1,).

Now we must show that I} +1; = O(log N). Since 1) and I, are the number of
light nodes on the original right paths, and the right subtree of a light node is less than
half the size of the tree rooted at the light node, it follows direcily that the number of
light nodes on the right path is at most log Ny + log N;, which is O(log N).

The proofis completed by noting that the initial potential is 0 and that the potential
is always nonnegative. It is important to verily this, since otherwise the amortized time
does not bound the actual time and is meaningless.

Since the insert and deleteMin operations are basically just merges, they also have
C{log N) amortized bounds.

11.4. Fibonacci Heaps

In Section 9.3.2, we showed how to use priority queues to improve on the niive o(v[H
running time of Dijkstra’s shortest-path algorithm. The important observation was that the
running time was dominated by |E} decreaseKey operations and [V} insert and deleteMin
operations. These operations take place on a set of size at most [V]. By using a binary heap,
all these operations take O(log |V|) time, so the tesulting bound for Dijkstras algorithm can
be reduced to O{|E|log |V ).

In order to lower this time bound, the time required to perform the decreaseKey oper-
ation must be improved. d-heaps, which were described in Section 6.5, give an O(log, |V|)
time bound for the decreaseKey operation as well as for insert, but an O(d log, V) bound
for deleteMin. By choosing d to balance the costs of |E| decreasekey operations with |v|
deleteMin operations, and remembering that d must always be at least 2, we see that a good

choice for d is
d = max(2,[JEV|VID

This improves the time hound for Dijkstra’s algorithm to

O(lE] 10g6 1iEnuip v

The Fibonacci heap is a data structure that supports all the basic heap operations in
O(1) amortized time, with the exception of deTetaMin and delete, which take O(logN)
amortized time. It immediately follows that the heap operations in Dijkstra’ algorithm will
require a total of O{|E! + V| log |V]} time.

Fibonacei heaps* generalize binomial queues by adding two new concepts:

A different implementation of decreaseKey: The method we have seen before is to
percolate the element up toward the root. It does not seem reasonable to expect an
O(1) amortized bound for this strategy, so a new method is needed.

*The name comes from a property of this data structure, which we will prove later in the section.
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Lazy merging: Two heaps are merged only when it is required ta do so. This is similar
1o lazy deletion. For lazy merging, merges are cheap, but because lazy merging does
not actually combine trees, the deleteMin operation could encounter lots of trees,
making that operation expensive. Any one deleteMin could take linear time, but it

is always possible to charge the time to previous merge operations. in particular, an
expensive deleteMin must have been preceded by a large number of undhuly cheap
merges, which were able to store up extra potential.

11.4.1. Cutting Nodes in Leftist Heaps

In binaty heaps, the decreaseKey operation is implemented by lowering the value at a node
and then percolating it up toward the root untit heap arder is established. In the worst case,
this can take O(log N) time, which is the length of the longest path toward the root in a
balanced tree.

This strategy does not work if the tree that represents the priority queue does not
have O(log N) depth. As an example, if this strategy is applied to leftist heaps, then the
decreaseKey operation could take ©{N) time, as the example in Figure 11.9 shows.

We see that for leftist heaps, another strategy is needed [or the decreasekey operation.
Our example will be the leftist heap in Figure 11.10. Suppose we want to decrease the key
with value 9 down to 0. If we make the change, we find that we have created a violation of
heap order, which is indicated by a dashed line in Figure 11.11.

We do not want to percolate the 0 to the root, because, as we have seett, there are cases
where this could be expensive, The solution is to cut the heap along the dashed line, thus
creating two trees, and then merge the two trees back into one. Let X be the node to which
the decreasekey operation is being applied, and let P be its parent. After the cut, we have
two trees, namely, H| with root X, and T;, which is the original tree with H; removed. The
situation is shown in Figure 11.12.

If these two trees were both leftist heaps, then they could be merged in O(log N) time,
and we would be done. It is easy Lo see that H, is a leftist heap, since none of its nodes
have had any changes in their descendants. Thus, since all of its nodes originally satisfied
the leftist property, they still must.

Flgure 11.9 Decreasing N = 1 to 0 via percolate up would take O(N) time
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H,

Figure 11,42 The two trees after the cut

Nevertheless, it seems that this scheme will not work, because 75 is not necessarily
leftist. However, it is easy to reinstate the leftist heap praperty by using two observations:

* Only nodes on the path from P 1o the oot of T can be in violation of the Teftist heap
propetty; these can be fixed by swapping children.

* Since the maxiroum right path length has at most [log(N + 1) nodes, we only need to
check the first|log(N + 1)) nodes on the path from P to the root of T;. Figure 11.13
shows Hy and T; after T is converted to a leftist heap.
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0

H,

Figure 11.13 T, converted to the leftist heap H,

Figure 11.14 decreaseKey(X, 9) completed by merging H; and H,

Because we can convert T; to the leftist heap H in O(log N) steps, and then merge H;
and H,, we have an O(log M) algorithm for performing the dec reaseKey operaticn in leftist
heaps. The heap that results in our example is shown in Figure 11.14.

11.4.2. Lazy Merging for Binomial Queues

The second idea that is used by Fibonacci heaps is lazy merging. We will apply this idea to
binomial queues and show that the amortized time to petform a merge operation (as well
as insertion, which is a special case) is O(1). The amortized time for deleteMin will still be
O(log N).

The idea is as [ollows: To merge two binomial queues, merely concatenate the two lists
of binomial trees, creating a new binomial queue. This new queue may have several trees
of the same size, so it violates the binomial queue property. We will call this a lazy binomial
queue in order to maintain consistency. This is a fast operation that always takes constant
(worst-case) time. As before, an insertion is done by creating a one-node binomial queue
and merging. The difference is that the merge is lazy.

The deleteMin operation is much more painful, because it is where we finally convert
the lazy binomial queue back into a standard binomial queue, but, as we will show, it is
still O(log N} amortized time—but not O(log N) worst-case time, as before. To pertorm a
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Figure 11,15 Lazy binomial quene

P ©° P o o

Flgure 11,16 Lazy binomial queue after removing the smallest element (3)

/%15 for( R = 0; R <= [logN]|; Re+ )
/¥ 2% while( |lg] >= 2 )
{

/* 3%/ Remove two trees from ]
FAR LY Merge the two trees into a new tree;
/* 5%/ Add the new tree to Ip.;;

}

Figure 11.17 Procedure to reinstate a bincmial queue

deleteMin, we find (and eventually return) the minimum element. As before, we delete it
from the queue, making each of its children new trees. We then merge all the trees into a
binomial queue by merging two equal-sized trees until it is no longer possible.

As an example, Figure 11.15 shows a lazy binomial queue, In a lazy binomial queue,
there can be more than one tree of the sare size. To perform the deleteMin, we remove the
smallest element, as before, and obtain the tree in Figure 11.16.

We now have to merge all the trees and obtain a standard binomial queue. A standard
binomial queue has at most one tree of each rank. In order 1o do this efficiently, we must be
able to perform the merge in time proportional to the number of trees present (T) (orlog N,
whichever is larger). To do this, we form an array of lists, Iy, Ly, ..., Lg__ +1, where Ry is
the rank of the largest tree. Each list Ly contains alt of the trees of rank R. The procedure
in Figure 11.17 is then applied.

Each time through the loop, at lines 3 through 5, the total number of trees is reduced
by 1. This means that this part of the code, which takes constant time per execution, can
only be performed T — 1 times, where T is the number of trees, The for loop counters and
tests at the end of the while loop take O(log N) time, so the running time is O(T -+ log N3,

as required. Figure 11,18 shows the execution of this algorithm on the previous collection
of binomial trees.

Amortized Analysis of Lazy Binomial Queues

lo carry out the amortized analysis of lazy binomial queues, we will use the same potential
function that was used for standard binomial queues. Thus, the potential of a lazy binomial
quee is the number of trees.

341



CHAPTER 11/ AMORNIZED ARALYSIS
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Figure 11.18 Combining the binomial trees into a binomial queue

THEOREM 11.3,
The amortized running times of merge and insert are both O(1) Jor lazy binomial queues.
The amortized running time of deleteMin is O(log N,

PROOF:
The potential function is the number of trees in the collection of binomial queues. The
initial potential is 0, and the potential is always nonnegative. Thus, over a sequence of
operations, the total amortized time is an upper bound on the total actual time

For the merge operation, the actual time is constant, and the number of trees in
the collection of binomial queues is unchanged, so, by Equation (11.2), the amortized
time is O(1).

Forthe insert operation, the actual time is constant, and the number of trees can
increase by at most 1, so the amortized time is o).

The deleteMin operation is more complicated. Let R be the rank of the tree that
contains the minimum element, and let T be the number of trees. Thus, the potential
at the start of the deTeteMin operation is T. To perform a deTeteMin, the children of the
smallest node are split off into separate trees. This creates T + R trees, which must he
merged into a standard binomial queue. The actual time to performthisis T+R +log N,
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if we ignore the constant in the Big-Oh notation, by the argument above.* On the other
hand, once this is done, there can be at most log N trees remaining, so the potential
function can increase by at most (log N) — T. Adding the actual time and the change
in potential gives an amortized bound of 2log N + R. Since all the trees are binomial

trees, we know that R = logN. Thus we arrive at an Oflog N) amontized time bound
for the deleteMin operation,

11.4.3. The Fibonacci Heap Operations

As we mentioned before, the Fibonacci heap combines the leftist heap decreaseKey op-
eration with the lazy binomial queue merge operation. Unfortunately, we cannot use both
operations without a slight modification. The problem is that if arbitrary cuts are made in
the binomial trees, the resulting forest will no longer be a collection of binomial trees. Be-
cause of this, it will no longer be true that the rank of every tree is at most |log N} Since
the amortized bound for deleteMin in lazy binomial queues was shown to be 2 log N + R,
we need R = O(log N) for the deleteMin bound to hold.

In order to ensure that R = O(logN), we apply the following rules to all nonroot
nodes:

+ Mark a (nontoot) node the first time that it loses a child (because of a cut).

» If a marked node loses another child, then cut it from its parent, This node now
becomes the root of a separate tree and is no fonger marked. This is called a cascading
cut, because several of these could occur in one decreaseKey operation.

Figure 11.19 shows cone tree in a Fibonacci heap prior to a decreaseKey operation,
When the node with key 39 is changed to 12, the heap order is violated. Therefore, the
node is cut from its parent, becoming the root of a new tree. Since the node containing 33
is marked, this is its second lost child, and thus it is cut from its parent (10). Now 10 has
lost its second child, so it is cut from 5. The process stops here, since 5 was unmarked. The
node 5 is now marked. The result is shown in Figure 11.20.

Notice that 10 and 33, which used to be marked nodes, are no longer marked, because
they are now root nodes. This will be a crucial observation in our proof of the time bound.

11.4.4. Proof of the Time Bound

Recall that the reason for marking nodes is that we needed to bound the rank {(number of

children) R of any node. We will now show that any node with N descendants has rank
O(log N).

LEMMA 11.1.

Let X be any node in a Fibonacei heap. Let ¢, be the ith youngest child of X. Then the rank of
G is at least i — 2.

PROOF:
At the time when ¢; was linked 10 X, X already had (older) children ¢, ¢3, ..., ;.
Thus, X had at least i — 1 children when it linked to ¢,. Since nodes are linked only

*We can do this because we can place the constant implied by the Big-Oh notation in the potential function and
still get the cancellation of terms, which is needed in the proof.
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Figure 11.20 The resulting segment of the Fibonacci heap afier the decreaseKey operation

il they have the same rank, it follows that at the time that ¢; was linked to X, ¢; had
at least i — 1 children. Since that time, it could have lost at most one child, or else it
would have been cut from X. Thus, ¢; has at least i — 2 children,

From Lernma 11.1, it is easy to show that any node of rank R must have a lot of
descendants.

LEMMA 11.2.
Let Fi, be the Fibonacci numbers defined (in Section 1.2) by Fy = 1, Fi=1andF, =
Fuoy + Fp—y. Any node of rank R = 1 has at leqst Fr1 descendants (including ftself).

PROOF:

Let 5p be the smallest tree of rank R, Clearly, Sy = land §, = 2, By Lemima 11.1, a
tree of rank R must have subtrees of rank at least R — 2,R—3, ...,1, and 0, plus
another subtree, which has at least one nade. Along with the root of Sg itself, this gives

a minimum value for Spsy of S = 2 + EFQS 5i. It is easy to show that Sp = Fgyy

{Exercise 1,9a).

Because it is well known that the Fihonacci numbers grow exponentially, it immediately
follows that any node with s descendants has rank at most O(logs). Thus, we have
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LEMMA 11.2.
the rank of any node in a Fibonacei heap is Olog N).

PROOF:
Immediate from the discussion above.

If all we were concerned about were the time bounds for the merge, insert, and
deleteMin operations, then we could stop here and prove the desired amortized time
bounds. Of course, the whole point of Fibonacci heaps is 10 obtain an O(1) time bound
for decreaseKey as well.

The actual time required for a decreaseKey operation is 1 plus the nutber of cascading
cuts that are performed during the operation. Since the number of cascading cuts could be
much more than O(1), we will need to pay for this with a loss in potential. If we look at
Figure 11.20, we see that the number of trees actually increases with each cascading cut, so
we will have to enhance the potential function to include something that decreases during
cascading cuts. Notice that we cannot just throw out the numbser of trees from the potential
tunction, since then we will not be able to prove the time bound for the merge operation.,
Looking at Figure 11.20 again, we see that a cascading cut causes a decrease in the num-
ber of marked nodes, because each node that is the victim of a cascading cut becomes an
unmarked root. Since each cascading cut costs 1 unit of actual time and increases the tree
potential by 1, we will count each marked node as two units of potential. This way, we have
a chance of canceling out the number of cascading cuts.

THEQREM 11.4

The amortized time bounds for Fibonacci heaps are O(1} for insert, merge, and
decreaseKey and O(log N) for deleteMin.

PROOF:

The potential is the number of trees in the collection of Fibonacci heaps plus twice the
number of marked nodes. As usual, the initial potential is 0 and is always nonnegative.
Thus, over a sequence of operations, the total amortized time is an upper bound on
the total actuat time.

For the merge operation, the actual time is constant, and the number of trees and
marked nodes is unchanged, so, by Equation (11.2), the amortized time is O(1).

For the insert operation, the actuat time is constant, the number of trees increases
by 1, and the number of marked nodes is unchanged. Thus, the potential increases by
at most 1, so the amortized time is O(1).

For the deleteMin operation, let R be the rank of the tree that contains the
minimum element, and let T be the number of trees before the operation. To perform
a deleteMin, we once again split the children of a tzee, creating an additional R new
trees. Notice that, although this can remove marked nedes (by making them unmarked
roots), this cannot create any additional marked nodes. These R new trees, along with
the other T trees, must now he merged, at a cost of T + R + logN = T + O(log N),
by Lemma 11.3. Since there can be at most O(fog N) trees, and the number of marked
nodes cannot increase, the potential change is at most O(log N) — T. Adding the actual
time and potential change gives the O(log N) amortized bound for deleteMin.
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Finally, for the decreaseXey operation, let C be the number of cascading cuts. The
actual cost of a decreaseKey is C + 1, which is the total number of cuts performed.
The first {noncascading) cut creates a new tree and thus increases the potential by 1.
Fach cascading cut creates a new tree, but converts a marked node to an unmarked
{root) node, for a net Joss of one unit per cascading cut. The last cut also can convert
an unmarked node (in Fig. 11.20 it is node 5) into a marked node, thus increasing the
potential by 2. The total change in potential is thus at most 3 — C. Adding the actual
time and the potential change gives a total of 4, which is O(1).

11.5. Splay Trees

As a final example, we analyze the rnning time of splay trees. Recall, from Chapter 4, that
after an access of some item X is performed, a splaying step moves X to the root by a series
of three operations: zig, zig-zag, and 2ig-2ig. These tree rotations are shown in Figure 11.21.
We adopt the convention that if a tree rotation is being performed at node X, then prior to
the rotation P is its parent and (if X is not a child of the root) G is its grandparent.

Recall that the time required for any tree operation on node X is proportionat to the
number of nodes on the path from the root to X. If we count each zig operation as one
rotation and each zig-zig or zig-zag as 1wo rotations, then the cost of any access is equal to
1 plus the number of rotations,

In order to show an O(log N} amortized bound for the splaying step, we need a po-
tential function that can increase by at most O(log N) over the entire splaying step but that

Figure 11,21 zig, zig-zag, and zig-zig operations: each has a symmetric case (not shown)
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will also cancel out the number of rotations performed during the step. It is not at all easy
o find a potential function that satisfies these eriteria, A simple first guess at a potential
hunction might be the sum of the depths of all the nodes in the tree. This does not work,
because the potential can increase by G(N) during an access. A canonical example of this
occurs when elements are inserted in sequential order.

A potential function & that does work is defined as

BT = > logS(i)
7

where S(i) represents the number of descendants of i (including i itself). The potential
function is the sum, over all nodes i in the tree T, of the logarithm of S{j),
To simplify the notation, we will define

R(D)

I

log S(i)

This makes

&B(T)

>R

el

R(i) represents the rank of node i. The terminclogy is similar to what we used in the anal-
ysis of the disjoint set algorithim, binomial queues, and Fibonacei heaps. In all these data
structures, the meaning of rank is somewhat different, but the rank is generally meant to be
on the order (magnitude) of the logarithm of the size of the tree. For a tree T with N nodes,
the rank of the root is simply R(T) = log N Using the sum of ranks as a potential function
is similar to using the sum of heights as a potential function. The important difterence is

that while a rotation can change the heights of many nodes in the tree, only X, P, and G
can have their ranks changed.

Before proving the main theorem, we need the following lemma.

LEMMA 114,
ifa+b = c,andaandb are both positive integers, then

loga + logh = 2logc ~ 2

PROGF:
By the arithmetic-geometric mean inequality,

\/a—b = (a + b)2
Thus

Jab = ¢
Squaring both sides gives
ab = c%/4

Taking logarithms of both sides proves the lemma.

With the preliminaries taken care of, we are ready 1c prove the main theorem.
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