STRING MATCHING AND
DOCUMENT PROCESSING

Finding some or all occurrences of a given pattern string in a given text is an im-
portant and commonly encountered problem. For example, most word process-
ing software packages have built-in search-and-replace functions and spell
checkers, both of which depend on finding the occurrences of words in texts. On
the Internet, string matching is used for locating Web pages containing a given
query string. String matching and approximate string matching is also a key
technique in bioinformatics, which entails searching gene sequences for patterns
of interest.

In this chapter, we present three standard string-matching algorithms, due
to Knuth, Morris, and Pratt (the KMP algorithm); Boyer and Moore (the BM al-
gorithm); and Karp and Rabin (the KR algorithm). The KMP and BM algorithms
preprocess the pattern string so that information gained during a search for a
match of the pattern can be used to shift the pattern more than the one position
shifted by a naive algorithm when a mismatch occurs. The KR algorithm shifts
the pattern by only one position at a time, but it performs an efficient (constant-
time) check at each new position.

PART V: Special Topics

H

Often it is useful to find an approximate match in a text to a given patterp
string. An important measure of approximation is known as the edit distance be.
tween two strings, which is, roughly speaking, the minimum number of single-
character alterations that will transform one string into another. We present 3
dynamic programming solution to computing the edit distance between strings,

We finish the chapter with a discussion of tries and suffix trees. When the
text is fixed, preprocessing the text as opposed to the pattern string leads to effi-
cient string-matching algorithms. This preprocessing is based on constructing a
trie and a related suffix tree corresponding to the text. Tries can be used to cre-
ate inverted indexes to strings in a large collection of dara files, such as Wep
pages on the Internet.

The Naive Algorithm

The string-matching problem can be formally described as follows. An alphabet is
a set of characters or symbols A = {aj,a,, ..., a}. Astring s = S[0:n — 1] of length
non A is asequence of # characters (repetitions allowed) from A4, Such a string §
= 34815 .. 5 5,1 €an be viewed as an array of characters S[0:1 — 1] from 4, so that
the (i + 1)%character s;in the string is denoted by S[i1,i=0,...,n— 1. More gen:
erally, we denote the substring consisting of symbols in consecutive positions 7
through j of S by S[i:j], 0 < ; =Jj =n — 1. The null string, denoted by &, is the
string that contains no symbols. We let A* denote the set of all finite strings (in-
cluding the null string £) on A. The length of a ‘string S, denoted [Sl, is the num-
ber of characters in S. For g € A, we let a denote the string of length 7 consisting
of the single symbol 4 repeated 7 times.

Given a pattern string P = P[0:m — 1] of length m and text string T = T[0:n — 1]
of length , where m = n, the string-matching problem is to determine whether
Poccursin T. In our string-matching algorithms, we assume that yve are looking
for the first occurrence (if any) of the pattern string in the text string. The algo-
rithms can be readily modified to return all occurrences of the pattern string.

A naive algorithm for finding the first occurrence of Pin Tis to position P at
the start of T'and simply shift the pattern P along T, one position at a time, until
either a match is found or the string Tis exhausted (that is, position n — m + 1in
T'is reached without finding a match).

function NaiveStringMatcher(P[0:m — 1, To:n — 1)

Input: P[O:m — 1] (a pattern string of length m)
T[0:n — 1] (a text string of length n)

Output: returns the position in 7 of the first occurrence of P, or — 1 if P does not oceur
inT

 a given pattern
edit distance be-
nmber of single:
1. We present 3
between strings,
trees. When the
ing leads to effi-
1 constructing a
~be used to cre-
s, such as Web

s. An alphabetis
n — 1] of length
. Such a string §
from A4, so that
— 1. More gen-
1tive positions /
ted by e, is the
nite strings (in-
(S, is the num-
gth 7 consisting

T=T[0n—1] FIGURE 20.1
rmine whether
we are looking
ring. The algo-
ttern string.
to position P at
at a time, until
nyu—m+11

_ Action of procedure
_ NaiveStringMatcher
for a sample
_pattern string P[0:7]
and a text string
710:22] on alphabet
A={0, 1, 2}. For
each shift s, we
show that portion
of P that matches T,
with the first
_mismatch shaded. A

match is found
beginning at the
11t character of T.

> does not occur

CHAPTER 20: String Matching and Document Processing

fors«Qton—mdo
ifT[s:s+ m — 1] = Pthen
return(s)
endif
endfor
return(—1) ¥
end NaiveStringMatcher

BB UG AN DD ULEB D DYIEO RO DA F RNV IO ARTDIT U EHA VOO ERE DL ITEEEBODOIFUDTIIGUREN VOGO RRTEE OV NG Y

BRI CE AL OSEARRO LT EE D

When measuring the complexity of procedure NaiveStringMatcher, it is nat-
ural to choose comparison of symbols as our basic operation. We can test
whether T{s: s + m — 1] = P by using a simple linear scan. Clearly, this scan re-
quires a single comparison in the best case (P[0] # T[s]) and m comparisons in
the worst case (P[i] = T[s + i],i = 0, ..., m — 2). Because the for loop of proce-
dure NaiveStringMatcher is iterated n — m + 1 times, NaiveStringMatcher never
performs more than m(n — m + 1) comparisons. Moreover, #(1 — m + 1) com-
parisons are performed, for example, when P[0:m — 1] and T[0:n — 1] are the
strings 0" ~ '1 and 0", respectively, over the alphabet A = {0, 1}. Thus,
NaiveStringMatcher has worst-case complexity

W(m, n) =m(n —m+ 1) € 0(nm).

The action of NaiveStringMatcher is illustrated for a sample pattern and text
string in Figure 20.1.

1

P 0 01 0 O 0 1 ‘

T 0o 01 0010020900100 290122200
s=0 0 0 1 0 0

s=1 0 .0

s=2 0

s=3 0 01 0 0 2 01

s=4 0 0

s=5 0

s=6 0 0 1

s=17 0 1

s=8 1

s=9 0 0 1

s=10 0 01 0 0 2 01

634 B PARTV: Special Topics

The Knuth-Morris-Pratt Algorlthm

There is an obvious inefficiency in NaiveStringMatcher: At a given point we might
have matched a good part of the pattern P with the text T until we found a mis-
match, but we don’t exploit this in any way. The KMP string-matching algorithm
is based on a strategy of using information from partial matchings of P to not
only skip over portions of the text that cannot contain a match but also to avoid
checking characters in T that we already know match a prefix of P. The KMP
algorithm achieves O(n) worst-case complexity by preprocessing the string P to
obtain information that can exploit partial matchings.

To illustrate, consider the pattern string P = “00100201” and text string
T = “0010010020001002012200". Placing P at the beginning of T, note that a
mismatch occurs at index position 5. The naive algorithm would then shift by
one to T[1] and simply start all over again checking at the beginning of P. This
completely ignores that we have already determined that P[0:4] = 00100 =
7[0:4]. Indeed, by simply looking at P[0:4], we see that the first position in
T where a match could possibly occur is at 7 = 3, because any shift of P by less
than three will cause mismatches between the relevant prefix of P[0:3] = T[0:3]
and suffix of P[1:4] = T[1:4] determined by the shift. Indeed, if we shift by one,
we would be comparing the prefix 0010 of P[0:3] with the suffix 0100 of P[1:4].
Similarly, if we shift by two, we would be comparing the prefix 001 of P[0:3]
with the suffix 100 of P[1:4]. Thus, we need to shift by three before we match
the prefix 00 of P{0:3] with the suffix 00 of P[1:4]. Hence, from the mismatch
that occurs at position { = 5, the next starting position where a match can occur
is at position 5 — 2 = 3. Moreover, we do not need to check the first two charac-
ters in P because they already match the first two characters of T at this new po-
sition for P. Note that next position where a match can occur was obtained by
subtracting the length of the largest prefix of P[0:3] that was also a suffix of P[L:4]
from the position where the mismatch occurred.

More generally, suppose we have detected a mismatch at position 7 in T, where
T[] # P[], but we know that the previous j characters of Tmatch with P[0;j — 11.
Also, suppose d] is the length of the longest prefix of P[0;j — 2] that also occurs as
a suffix of P[1:j — 1]. Then the next position where a match can occur is at position
i— d] Moreover, to see whether we actually have a match starting at position
i — d, we can avoid checking the characters that we already know agree with
those in T—that is, the characters in the substring T[s - z — 1]. Hence, we need
only check the characters in the substring T[i:i + m — j - 1] with those in the sub-
string P[dj: m — 1] to see if a match occurs (see Figures 20.2 and 20.3).

CHAPTER 20: String Matching and Document Processing @ 635

FIGURE 202 Posttiom 17J i—d i—1
.............. eStTa[t.]eifp?\]N%eq T ... P[0] P[l]...P[j—dj] P[j~d/.+1]..,P[j—1] T[i]+# P[j] ...
/ J1, bu il I Il
[or[;:jf];;dt]ji:s P[O] P[l].. Pld,—1]P[d] ..
; the length of the v
e e
PIO:j— a
50 to avo grees with a suffix
of P[1:j—1].
. e T 0010010020001002012200 0010010020001002012200
text string
o ng FIGURE 20.3 00100201 00100201
€ ; at Interpretation of mismatch ati=j=5 5 — 2 is next index where a match could
ent shift Figure 20.2 for occur (it doesn’t occur there)

specfic Pand T.

osition
By preprocessing the string P, we can compute the array Next[O:m — 1],

where Next[j] is the length of longest prefix of P[0 : j — 2] that agrees with a suf-
fixof P[1:j—11,j = 2, ..., m. We set Next[0] = Next[1] = 0. For example, for the
string P = “00100201”, we have the corresponding array Next[0:7] = [0, 0, 1, 0,
1,2,0,1]. Then for this P and the T discussed earlier, Figure 20.3 shows the situ-
ation described in Figure 20.2 fori = 5,7 = 5, and 4; = 2.

] = T]

The following key fact summarizes our discussion and is the key to the effi-
ciency of the KMP string matching algorithm.

Suppose in our scan of T looking for a match with P that we have a mismatch at position s
| in T, where TLil # PLj], but PI0: j — 11 = TILi — j:i— 11. Setting d,. = Nextlj], the next po-
| sition where a match of P can occur is at position / — d.. Moreover, we need only check the
substring Tli: i + m — d, — 11 with the substring Pld;: m — 11 to see if a match occurs there.

) OCCULS

at positio] . . .
In the pseudocode KMPSiringMatcher, we look for matches using a variable i

that scans the text T from left to right one position at a time, and a second vari-
able j that scans the pattern P in a slightly oscillatory manner, as dictated by the
key fact (see Figure 20.4). The variable i never backs up, so that when a match
occurs, it is actually at position i — m + 1 (in other words, s is the position of the
last character in P corresponding to the matching). The pseudocode is elegant
but somewhat subtle, because when a mismatch P[] # T[i] occurs, there is no

n the sub

PART V: Special Topics

need to explicitly place the pattern P at the next position 7 — Next[j]; we merely
need to check T[i: 7 + m — Next[j] — 1] against P[Next[j] : m — 1] to see if 5
match of P occurs at i — Next[j]. We perform this check by continuing the scan of
T'by 7 and replacing j by Next[j] before contiguing the scan of P by ;.

function KMPStringMatcher(P[0:m — 1], T[0:n — 1
Input: P[O:m — 1] (a pattern string of length m)
T0:n — 1] (a text string of length n)
Output: returns the position in T of the first occurrence of P, or —1
if P does not occurin T
<0 //iruns through text string T
je«0 //j runs through pattern string P in manner
dictated by key fact
CreateNext(P[0:m — 1], Next[O:m — 1])
while i < n do
if P[j] = Tli] then
ifj=m — 1 then //match found at position i — m + 1
return(f — m + 1)
endif
fe—i+1 //continue scan of T
jej+1 //continue scan of P
else //PU = T[]
J < Next|j] //continue looking for a match of P which
now could begin at position / — Next[]]
inT

sesvcew e

if j = O then
if T[/] # P[0] then //no match at position /
i+
endif
endif
endif
endwhile
return(—1)
end KMPStringMatcher

PEECRB SR E O R G G T A RO DG E PP AT DO SR Y PO U B AR YT F SO ROV T G P RO Y P E U A OB U E A AR DD B LR RGP IT RO

@
@
3
©
©
5
5
°
@
kS
B
&
s
5
°
@
®
S
o
©
»
»
I3
o
9
@
©
©
P
o
o
k3
@
@
#
o
o
s
»
#
®

cEwlcssGERRe bR s e

= e

In Figure 20.4, we illustrate the action of KMPStringMatcher for the pattern
string P and text string T discussed earlier, by tracing the values of s and j for each
iteration of the while loop. While NaiveStringMatcher used 37 comparisons to
find a match, KMPStringMatcher only used 21 (not counting the comparisons
made by CreateNext in preprocessing P).

1, we merely
1] to see if 3
1g the scan of

.

P in manner

m + 1

of P which
— Next[/]

FEEERREREE LS

the pattern
nd j for each

1parisons

omparisons

FIGURE 20.4

(a) A trace of the
values of j and j
for each iteration
of the while

loop in KMPString-
Matcher for

P = "00100201"
and T =
00100100200010
02012200".
Positions marked
with | are where
Tl # Pljland j is
reassigned with the
value Next]/].
(b) The implicit
shifting of P until a
match is found.

CHAPTER 20: String Matching and Document Processing

iteration ! ! !
i 012345567 8 910101111121314151617
j 01 2345234567 1212345¢67
*a)
T 0010010020001002012200
P 00100201 -
00100201
00100201

00100201 match

(b)

KMPStringMatcher has linear complexity because of the following key fact.

- The while loop in KMPStringMatcher is executed at most 2n times.

to

wososaan

To verity the key fact, note that the loop executes n times when 7 is incre-
mented within the loop. If / is not incremented in the loop, then the pattern P is
implicitly shifted to position i — Next[j], which is at least one more than the last
implicit placement of P. Therefore, this implicit shift can happen at most 7 times,
which verifies the key fact.

It remains to design the algorithm CreateNext. Again, there is a naive algo-
rithm NaiveCreateNext that computes each value of Next[i] from scratch, without
using any of the information gleaned from computing Next[k], k < i. It is easy to
see that the worst case of NaiveCreateNext is in Q(m?). However, similar to the de-
sign of KMPStringMatcher, using information gleaned about Next[i — 1] leads to a
more efficient way to compute Next[i] and yields an O(m) algorithm. We leave
the complexity analysis and correctness of CreateNext to the exercises.

function CreateNext(P[0:m — 1], Next[o:m — 1])

Input: P[0:m — 1] (a pattern string of length m)

Output: Next[0:m — 1] (Next[i] is length of longest prefix of P [0:/ — 2] that is a suffix
of Mii=1],i=0,...,m—1)

sau

PART V: Spedal Topics

Next[0] « Next[1] « 0
je2
j< 0
while /i < m do
if P[j] = Pli — 1] then
Next[i] - j + 1
fe—i+1
Je—j+1
else
if j > 0O then
J e Next[j — 1]
else
Next[l] « O
ie—i+1
endif
endif
endwhile
end CreateNext

ausooevauunooaaau»sa«aaaw»«aaasa»aaﬁuaweee&asnoooaan»aoe@aaacouu3aaooe«a&oec»waawn¢oam

R R R R T A

GeenCTsLaLB oo s eR R G

Similar to the KMP algorithm, the BM algorithm uses preprocessing of the pattern
string to facilitate shifting the pattern string, but it is based on a right-to-left scan of
the pattern string instead of the left-to -right scan made by the KMP algorithm. We
present a simplified version of the BM algorithm that compares the rightmost
character of the pattern with the character in the text corresponding to the current
shift of the pattern and uses this comparison to determine the next pattern shift (if
any). The full version of the BM algorithm is developed in the exercises.

In the BM algorithm, the pattern P[0:m — 1] is first placed at the beginning
of the text, and we check for a match by scanning the pattern from right-to-left.
If we find a mismatch, then we have two cases 1o consider, depending on the
character x of the text in index position m — 1 that is compared against the last
character of P. If x does not occur in the first m — 1 positions of P, then clearly we
can shift P by its entire length m to continue our search for a match. If x does
occur in the first m — 1 positions of P, then we shift P so that the rightmost oc-
currence of xin P[0:m — 1] is now at index position m — 1 in the text, and we re-
peat the process of scanning P from right-to-left at this new position. Again, if we
find a mismatch, we shift the pattern again based on the text character that was
aligned at the rightmost character of P. Also, in this simplified version, we ignore
any information gleaned about partial matchings in our previous placement of P
(this information 75 used in the full version of the BM algorithm).

EEERRER T

t scan of
hm. We
chtmost
current
| shift (if

ginning
-to-left.
on the
the last
arly we

f x does
10st OC-
| we Te-
n, ifwe
hat was
> ignore

ent of P

FIGURE 20.5

Action of simplified
BM algorithm, with
positions where
mismatches first
occur in the right-
to-left scan of
the pattern
indicated by !.

st R e

CHAPTER 20: String Matching and Document Processing B 639

The shifts associated with the two cases can be computed easily by prepro-
cessing the pattern string P. In the following pseudocode for CreateShift, for con-
venience, we assume that the array Skift is indexed by the alphabet 4 from
which the characters for the pattern P and text T arg.drawn.

. procedure CreateShift(P[0:m — 1], Shift[0: |A] — 1])

: nput: PlO:m — 1] (a pattern string)

¢ Output: Shift[0: |A] — 1] (the array of character-based shifts)

: fori<0tolAl - 1do //initialize Shift to all m's.

Shift]i] = m

: endfor

forie0tom—2do //compuite shifts based on rightmost
occurrence of P[] in P[O:m — 1]

: ShiflPll =m — i — 1

endfor

end CreateShift

PEEREUL G RNV O TR HE OB GO LB DO VG T AT LY O LI BN AT PG R NI RGP ARA DD OROT L E I ORROD U ERARBIE P AEE VG D R

For example, suppose P[0:8] is the string “character”. Then the values for the
shifts of the characters e, t, ¢,a,r,h are 1, 2, 3,4, 5, 7, respectively. The shift value
for all other characters is 9. In Figure 20.5, we illustrate how the simplified BM
algorithm uses these shifts to find a match of the pattern “character” in the text
“BMmatcher_shift_character_example”. ‘

The worst-case performance of the simplfied BM algorithm is the same as
that of the naive algorithm, ®(nm) (see Exercise 20.8). However, it can be shown
that its average behavior is linear in » and often works as well as the full version
of the BM algorithm. The full version of the BM algorithm works identically to
the simplified version when there is a mismatch between the rightmost charac-
ter of the pattern and the text character corresponding to this rightmost charac-
ter in the current shift of the pattern. If these two characters agree, however, the
tull version acts differently by exploiting the information gained by the matching
of a suffix of P with the corresponding characters in the text for the given place-
ment of P (see the discussion preceding Exercise 20.9).

! ! !

BMmatcher_shift_character_example
character Shift(r)=S5
character Shift(r)=29
character Shift(r)=2

character mat ch

PARTV: Special Topics

In this section, we assume without loss of generality that our strings are chosen
from the k-ary alphabet 4 = {0,1, ... , k — f. Bach character of 4 can be thought
of as a digit in radix-k notation, and each string S € A* can be identified with the
base k representation of an integer S. For example, when k = 10, the string of
numeric characters “6832355” can be identified with the integer 6832355, Given
a pattern string P[0:m — 1], we can compute the corresponding integer using
multiplications and m additions by employing Horner’s rule.

P=Pm— 1]+ k(Pm — 2] + (20.4.1)
k(Plm — 2] + k(Plm — 3]+ o+ k(P[] + kP[0])...))
Given a text string T[0:# — 1] and an integer s, we find it convenient to de-

note the substring T{s, s + m — 1] by T. A string-matching algorithm is obtained

by using Horner’s rule to successively compute T,, T, i, ..., where the compu-
tation continues until P = T, for some s (a match) or until we reach the end of
the text T. Of course, this is no better than the naive string-matching algorithm,

However, the following key fact is the basis of a linear algorithm.

1

Given the integers 7,_, and k™1, we can compute the integer T, in constant time.

\

The key fact follows from the following recurrence relation:

T, = k(T,_, — K" 'Ts —1]) + T[s + m — 11 s=1,..,n— m. (20.4.2)

For example, if k = 10, m = 7, T,_, = 7937245, and T, = 9372458, then re-
currence relation (20.4.2) becomes

T, = 10[7937245 — (1000000 X 7)] + 8 = 9372458,

The constant ¢ = k&~ ! in (20.4.2) can be computed in time O(logm) using the
binary method for computing powers. Once ¢ is computed, it does not need to be
recomputed when Formula (20.4.2) is applied again. Thus, assuming that the
arithmetic operations in (20.4.2) take constant time, each application of (20.4.2)
takes constant time. Hence, the 77 — m + 2 integers P and i, §=0,1,..,n—m
can be computed in total time O(n).

s are chosen
1 be though
fied with the

1) using th
t need to b
ng that the
of (20.4.2

11— 1

T,5=0,1,

CHAPTER 20: String Matching and Document Processing 641

The problem with the preceding approach is that the integers P and
1 — m, may be too large to work with efficiently, and the as-

sumption that Formula (20.4.2) can be performed in constant time becomes
unreasonable. To get around this difficulty, weyreduce these integers modulo
¢ for some randomly chosen integer ¢. To avoid multiple-precision arithmetic,
g is often chosen to be a random prime number such that kq fits within one
computer word. :

We now let

P@ = Pmod g,

_ — 204.3
T,9 = T, mod 4. ()

The values 7, and P can be computed in time O(n) using exactly the same

algorithm described earlier for computing 7, and P, except that all arithmetic
operations are performed modulo g. Clearly, if 7,/ # P then T, # P. However,
if 7,7 = P, we are not guaranteed that P = T.. When a shift s has the property
that 7, = P but T, # P we have a spurious match. However, for sufficiently
large g, the probablhty of a spurious match can be expected to be small. We
check whether a match is spurious by explicitly checking whether T, = P, and
continuing our search for a match if 7, P.

ETELCIEECEAR PSS H AT

RO DR BSOS EC TSR R RO ERAL DS L HACEDE B D G S

function KarpRabinStringMatcher(P[0:m — 1], T[0:n — 1], &, q)
Input: P[O:m — 1] (a pattern string of length m)
T[O:n — 1] (a text string of length n)
k (Ais the k-ary alphabet {0, 1, ...,k — 1))
g (a random prime number g such that g fits in one computer word)
Output: returns the position in T of the first occurrence of P, or —1 if P does not occur
inT
C« k"~ 1modgq
P@ 0
To(q) «0
foriOtom — 1do //apply Homer's rule to compute
P9 and T,@
P9 « (kP + P[i]) mod q
To@ « (k¥ @ + T[i]) mod g
endfor
fors«0Oton —mdo
if s > 0 then
T D e (kx(T, {9 — T[s — 1]%c) + T[s + m—1]) mod g
endif

PART V: Special Topics

FIGURE 20.6
Action of
KarpRabinString-
Matcher for a
sample pattern
string P[0:6], text
string 7[0:20], and
prime modulus

if 7. = P@ then
if 7, = Pthen //match is not spurious
return(s)
endif
endif
endfor
return(0)
end KarpRabinStringMatcher

maessaoauos»aeessssn@ca«aseoa@:wa&ooourenaaeavaeaoogaassq;n»ouzas:an»«uﬁsnﬁc»eevsﬁsﬂaew&asumoemﬂe

¥
5
5
S
o
9
5
>
IS
»
3
®
s
®
©
&
2
2
»
o
©
@

Figure 20.6 illustrates the action of function KarpRabinStringMatcher for a
sample pattern string P[0:6] = “6832355", text string T[0:20] = “895732102583
235544031”, and prime modulus q = 11. To illustrate the calculations of T,V ip
Figure 20.6, we show how KarpRabinStringMatcher computes T,Mfrom T,V
Using Formula (20.4.2) and doing all arithmetic modulo ¢ = 11, we have

7321026 = 10(5732102 — 1000000 X 5) + 6 (mod 11)
10(2 =1 X 5) +6 (mod 11)
=9 (mod11).

Because KarpRabinStringMatcher terminates after finding the first nonspuri-
ous match, the worst-case performance occurs for an input pair (P, T), where the
pattern string P occurs precisely at the end (s = 1 — m) of the text string T. With
g chosen at random, we can expect different behavior for different choices of
g, so that we now consider the expected number Texp (P, T)of string comparisons
made by the algorithm. For s # n — m, we make the assumption that 7,9 takes
on a particular value i € {0, 1, ..., g — 1} with equal probability 1/4. Becausea
spurious match occurs only when T, = PW s =0, .. 11 — m — 1, it follows that

I[O:ZO] 895732102683235544031
Pl[0:6] 6832355

TS(11)
10
9
2 Spurious match

Hl—d)—l)—‘)-—‘)-—ib—-‘vt\]l

XNV WN~O W

6
0
4
0
5
2

Match: return (9)

OUS

PR CREBC B D6 5 g

Matcher for g
5732102583
ns of 7,00 in
Dfrom 1,0,
> have

1)

st nonspuri- -
), where the
ring 7. With
1t choices of
comparisons
at T, takes
7. Because a
follows that

us match

: return (9)

CHAPTER 20: String Matching and Document Processing 643

a spurious match occurs at shift s with probability 1/4. Let r denote the expected
number of spurious matches. A test for a spurious match involves comparisons
in the worst case, and r + 1 such tests are performed (including the test at shift

s = n — mj); thus, the expected performance Texp(Bs T)of KarpRabinStringMatcher
for the input (P, T) is

Tep(PyT) = (r + 1)m + (n — m+ 1). (20.4.4)

The value r is the expectation of the binomial distribution with 7 — m trials
(shifts), where success (a spurious match) occurs with probability 1/4. Thus,
from Formula (E.3.9) of Appendix E, we have

— M
p=" q’ . (20.4.5)

Substituting Formula (20.4.5) into Formula (20.4.4), we obtain

n—-m

Texp (P, T) = (+ 1>m + (n—m+1). (20.4.6)

If we assume that ¢ is bounded above by a fixed constant, then KarpRabin-
StringMatcher achieves a worst-case complexity in. @ (nm), which is no better
than the naive algorithm. However, in practice, it is reasonable to assume that ¢
is much larger than m, in which case KarpRabinStringMatcher has complexity in
O(n). The Karp-Rabin string-matching algorithm has the additional feature that

it is readily adapted to the problem of finding m X m patterns in n X n texts (see
Exercise 20.16).

Approximate String Matching
In practice, there are often misspellings when creating a text, and it is useful
when searching for a pattern string P in a text to find words that are approxi-
mately the same as P. In this section, we formulate a solution to this problem
using dynamic programming. We have already discussed a solution to a similar
problem in Chapter 9—namely, the problem of finding the longest common sub-
sequence of two strings.

We first consider the problem of determining whether a pattern string
P[0:m — 1] is a k-approximation of a text string T[0:17 — 1]. Later, we look at the
problem of finding occurrences of substrings of T for which Pis a k-approximation.
The pattern string Pis a k-approximate matching of the text string Tif T can be con-
verted to P using at most k operations involving one of the following

PART V: Special Topics

1. Changing a character of T (substitution)
2. Adding a character to T (insertion)

3. Removing a character of T (deletion)
¥

For example, when P is the string “algorithm”, one of the following might occur;

L. elgorithm — algorithm (substitution of e with a)
2. algorthm — algorithm (insertion of letter 7)
3. lalgorithm — algorithm (deletion of letter 1)

In this example, each string T differs from P by at most one character. Unfor-
tunately, in practice, more serious mistakes are made, and the difference in-
volves multiple characters. We define the edit distance D(P, T) between P and Tto
be the minimum number of operations of substitution, deletion, and insertion
needed to convert T to P. For example, the strings “algorithm” and “logarithm”
have edit distance 3.

logarithm — alogarithm — algarithm — algorithm

Let D[i, j] denote the edit distance between the substring P[0:i — 1] consisting
of the first i characters of the pattern string P and T[0:j — 1] consisting of the first
J characters of the text string T. If P[i] = T[;], then D[i,j1 =D[i — 1,j— 1]. Other-
wise, consider an optimal intermixed sequence involving the three operations
substitution, insertion, and deletion that converts T[0;f — 1] into P[0:i — 1]. The
number of such operations is the edit distance between these two substrings. Note
that in transforming T to P, inserting a character into T'is equivalent to deleting a
character from P. For convenience, we will perform the equivalent operation of
deleting characters from P rather than adding characters to T. We can assume
without loss of generality that the sequence of operations mvolving the firsti — 1
characters of P and the first j — 1 characters of T are operated on first, To obtain a
recurrence relation for D[7, j], we examine the last operation. If the last operation
is substitution of T] with P[i] in T, then D[4, j] = D[i — 1, Jj— 1] + 1.1 the last op-
eration is the deletion of P[i] from P, then D[i, j] = D[i — 1,j] + 1. Finally, if the
last operation is deletion of T[] from T, then D[, J1=DIi,j— 1] + 1 The edit dis-
tance is realized by computing the minimum of these three possibilities. Observing
that the edit distance between a string of size 7 and the null string is 7, we obtain the
following recurrence relation for the edit distance:

D[z‘ 1- {D[i - 1,j—1], if P[] = T{jl,
’ min{D[i — 1,j — 1]+ 1, D[i — 1,7] + 1, D[i, j — 1] + 1}, otherwise.
init. cond. D[0,] = D[;,0] = i.

(20.5.1)

CHAPTER 20: String Matching and Document Processing 645

The design of a dynamic programming algorithm based on this recurrence and
its analysis is similar to that given for the longest common subsequence problem
discussed in Chapter 9, and we leave it to the exercises. We also leave as an exer-
cise designing an algorithm for finding the first occurrence or all occurrences of a
substring of the text string T'that is a k-approximation of the-pattern string P.

Tries and Suffix Trees

By preprocessing the pattern string, the KMP and BM algorithms achieved im-
provement over the naive algorithm. Another approach that can be applied
when the text is fixed is to preprocess the strings in the text using a data struc-
ture such as a tree. In this section, we discuss two important tree-based data
structures, tries and suffix trees, for preprocessing the text to allow for very effi-
cient pattern matching and information retrieval.

20.6.1 Standard Tries

Consider a collection C of strings from an alphabet 4 of size k, where no string in S is
a prefix of any other string. We can then construct a tree T whose nodes are labeled
with symbols from 4, such that the strings in C correspond precisely to the paths in
Tfrom the root R to a leaf node as follows. We construct T'such that the labels of the
children of each node are unique and occur in increasing order as the children are

scanned from left to right. Starting with the tree T consisting of a single root node
R, we inductively incorporate a new string S[0:p — 1] from Cinto T as follows. If no
child of the root R is labeled S[0], then we simply add a new branch at the root
consisting of a path of length p whose node at level i + 1 is labeled S[7],7 =0, ...,
p — 1. Otherwise, we follow a path from the root by first following the edge from
the root to the unique child of the root labeled S[0], then following the edge from
that node to its child labeled S[1], and so forth until we reach a node v at level i la-
beled S[i — 1] having no child (at level i + 1) labeled S[i]. We then add a new
branch at v consisting of a path of length p — 7 — 1, such that node in the path at
level j (in the tree) is labeled S[j — 1],j =7+ 1, ...,p — 1. A tree T constructed in
this way is called a standard trie for the string collection C. Figure 20.7 shows a stan-
dard trie for the sample string collection C = {“internet”, “interview”, “internally”,
“algorithm”, “all”, “web”, “world"} .

The leat nodes of the trie T can be used to store information about the string
S corresponding to the leaf, such as the location in the text of P, the number of
occurrences of P in the text, and so forth. The term trie comes from the word re-
trieval, because a trie can be used to retrieve information about P. In addition to
pattern matching, tries can be used for word matching, where the pattern is
matched only to substrings of the text corresponding to words. This is useful for
creating a forward index of words in a web document.

FIGURE 20.7

Standard trie for the
collection of strings
C = {"internet”,
"interview”,
“internally”,
“algorithm”, “all”,
“web", "world"}.

Itis immediate that a standard trie T has the following three properties: (1)
Each nonleaf node has at most k children, where & is the size of the alphabet 4;
(2) the number of leaf nodes equals the number of strings in S; and (3) the depth
of T equals the length of the longest string in S. The following proposition about
the space requirements for storing T is easily verified (see Exercise 20.22).

Proposition 20.6.1 1t T be a standard trie for a collection C of strings, and let s denote the total

length over all the strings in €. Then the number of nodes N (Ty of T'satisfies

N(T) € O(s).

We can efficiently test whether a given pattern string P[0:m — 1] belongs to
Cby scanning the string P and successively following the child in the trie labeled
with the current symbol that has been scanned until either no child of the
current node has a label equal to the symbol or a leaf node labeled with the last
symbol of P has been reached. Because we have made the assumption that
no string in C is a prefix of any other string, it follows that the pattern string

FIGURE 20.8

Compressed trie for
the same string set
C = {"internet”,
“interview”,
“internally”,
"algorithm”, “all”,
“web”, “world"} of
Figure 20.7

CHAPTER 20: String Matching and Document Processing 647

P[0:m — 1] belongs to Cif and only if a leaf node labeled with the last symbol in
Pis reached. Because each node has at most k children, this procedure has com-
plexity O(km). Thus, if the alphabet has constant size, the complexity of search-
ing for Pis linear in its length.

.

20.6.2 Compressed Tries

The O(s) space requirement of a standard trie T can be reduced if there are nodes in
T that have only one child. Consider any such node v, and let ¢ denote its only
child. Let x and y denote the labels of vand ¢, respectively, and let # denote the par-
ent of v. Then the path generated by a string S from C that contains v must also
contain ¢. Thus, without atfecting our ability to match S, we can compress the trie
by removing v, making ca child of #, and replacing the label y of ¢ with the string xy.
This operation can be repeated for other nodes having only one child, except that
x and y may themselves be strings instead of just single symbols. After repeatly per-
forming this compression operation until all internal nodes have at least two chil-
dren, we obtain a tree labeled with strings, which we call the compressed trie for S. A
compressed trie is also called a PATRICIA (practical algorithm to retrieve informa-
tion coded in alphanumeric) tree . Note that the compressed trie for S can also be
obtained by replacing every path uu, ... u,v from a node # to a node vin T whose
internal nodes u,, #,, ..., i, are bivalent (have exactly one child), but whose end
nodes z and v are not, with the edge uv and replacing the label y of v with the string
XX, ... X, ¥, where x; denotes the labelofu,i=1,... .k The compressed trie for the
trie given in Figure 20.7 is shown in Figure 20.8.

“ al// ”intel‘"

ul// “n” “VieVV” #“ eb ” “ Orld”

“gorithm”

“ a]ly ” " et ”

The following proposition about the number of nodes of a compressed trie T
is easily verified.

PART V: Special Topics

Proposition 20.6.2 1e(7he 5 compressed trie for a collection C of ¢ strings. Then the number of
nodes N(T) of Tsatisfies

FIGURE 20.9

(a) Suffix tree
for string

v
N(T) € 0(J).

Comparing this result with Proposition 20.6. 1, we see that compressing the
standard trie has reduced the space requirements from O(s) to O(c). This becomes
significant when the strings in C are long. A compressed trie can be created di-
rectly from the set of strings € without first constructing a standard trie for C and
then compressing it. We leave as an exercise designing an algorithm for con-
structing a compressed trie directly from C. Using a slight modification of the
technique used for a standard trie, we can search a compressed trie to efficiently
test whether a given pattern string belongs to C (see Exercise 20.24).

20.6.3 Suffix Trees

A suffix tree (also called a suffix trie) with respect to a given text string T'is a com-
pressed trie for the string collection ¢ consisting of all suffixes of . This definition
requires that no suffix be a prefix of any other suffix. For strings in which this oc-
curs, we simply add a special symbol to the end of every suffix in C. Suffix trees
are useful in practice because they can be uséd to determine whether a pattern
string P is a substring of a given text string T. The suffix tree for the string T =
“babbage” is shown in Figure 20.9(a). Because the string label on each node cor-
responds to a substring T[7:j] of T, it can be represented more compactly using
just the pair (4, j). Figure 20.9(b) shows the more compact representation of the
node labels for the suffix tree in part (a).

Given a pattern P[0:m — 1] in string P, itis easy to design an O(km) algorithm
that traces a path in the suffix tree corresponding to test 7'to determine whether
P occurs as a substring of 7. We leave the design of such an algorithm as an
exercise,

“aQ”
ubbageu uge:l

//bbager/

CHAPTER 20: String Matching and Document Processing

FIGURE 20.9

Continued.

b) more compact
(representatiol?m of (1,1) (0,0) +1(6,6) (5.6)
the node labels for
the suffix tree in

part(a) (2,6) (5,6) (1,1) (3,6)

(2.6) (5.6)

(b)

Closing Remarks

oM. String and pattern matching have been areas of interest for a long time, and
nition string algorithms have recently received increased attention because of their
his oc role in Web searching as well as in computational biology. In this chapter, we
have introduced several of the most important string-matching algorithms, but
the subject is vast. The interested reader should consult the references for more
extended treatments of this important topic and its applications.

References and Suggestions for Further Reading

Books on string matching: ’

Aoe, J. Computer Algorithms: String Pattern Matching Strategies. Wiley-IEEE Com-
puter Society Press, 1994,

Crochemore, M. Text Algorithms. New York: Oxford University Press, 1994.

Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge: Cambridge University Press, 1997.

Navarro, G., and Raffinot, M. Flexible Pattern Matching in Strings. Cambridge:
Cambridge University Press, 2002.

Stephen, G. A. String Searching Algorithms. London: World Scientific Publishing,
1994.

Chen, D., and Cheng, X., eds. Pattern Recognition and String Matching. Dordrecht,
The Netherlands: Kluwer Academic Publishers, 2002. A collection of 28
articles contributed by experts on pattern recognition and string matching.

PART V: Special Topics

Survey articles on string matching:

Baeza-Yates, R. A. “Algorithms for String Matching: A Survey.” ACM SIGIR
Forum 23 (1989): 34-58,

Navarro, G. “A Guided Tour to Approxinmyate String Matching.” ACM Computing
Surveys 33,no. 1 (2001): 31-88.

2 dale| =8 . Section 20.2 The Knuth-Morris-Pratt Algorithm

20.1. Suppose P[0:m — 1] and T[0:n — 1] are the strings 0” =11 and 0”that were
the worst-case strings of length m and # for NaiveStringMatcher,

a. Show that P[0:m — 1] and T[0:11 — 1] are best-case strings of length
and # for KMPStringMatcher for the case where P does not occur in T,

b. Find worst-case strings P[0:m — 1] and T[0:n — 1], respectively, for
KMPStringMatcher, and thereby determine W(m,n) for KMPString-
Matcher.

Compute the array Next[0:10] for the pattern string P = “abracadabra”.

Trace the action of KMPStringMatcher as in Figure 20.4 for the pattern
string P = “cincinnati” and the text string 7 = “cincinatti_is_cincin-
nati_misspelled”.

Verily the correctness of the algorithm CreateNext,
Show that CreateNext has O(im) complexity.

‘Write programs implementing NaiveStringMatcher and KMPStringMatcher,
and run them for various inputs for comparison.

Section 20.3 The Boyer-Moore String-Matching Algorithm

20.7 Design and analyze pseudocode for the simplified BM algorithm.

20.8 Show that the worst case of the simplified BM algorithm is as bad as the
naive algorithm.

Exercises 20.9 through 20.14 involve the full version of the BM algorithm. As
mentioned, when a mismatch occurs in the last position of the pattern string,
the full version works the same way as the simplified version using the value
Shift[c] to shift the pattern based on the mismatched text character ¢. The differ-
ence arises when we have matched the last ¥ > 0 characters of the pattern
string P, called a good suffix (of length k), before a mismatch occurs with a char-
acter ¢ from the text. We then shift the pattern by the larger of the following
two shifts, called the bad character shift s, and the good suffix shifts,, respectively.
The bad character shift s, is simply defined as 5, = max{Shift[c] — k, 1}. We can
shift P by s, and not miss any matches, for reasons similar to those used when
comparing against the last character in P.

CHAPTER 20: String Matching and Document Processing

The good suffix shift s, is also based on reasoning similar to that used to
create the array Shift, but where we consider suffixes of P instead of a single
character. More precisely, we look for the rightmost repeated occurrence of the
good suffix of length k (if any) to shift this occurrence by the amount s, re-
quired to bring it to the end of the pattern. Of course, the ¢haracter preceding
this repeated occurrence (if any) must be different from the character preced-
ing the good suffix; otherwise, a mismatch will occur again, Even when such a
repeated occurrence of the good suffix does not happen, we might not be able
to shift the pattern by its entire length m because we might miss a match that
might occur when a suffix of length j of a good suffix of length k, 0 <j <k,
matches a prefix of length j of P. In the latter case, we shift by the amount
required to bring the prefix to the end of the pattern P. For example, if
P = 011101001, then the good suffix shifts for k = 1, ..., 8, which are given
by5,3,7,7,7,7,7,7, respectively.

20.9 Design and analyze pseudocode for an algorithm that creates the good-
suffix shift values for a given input pattern P[O:nz — 1].

Compute the bad-character shifts and the good-suffix shifts for the fol-
lowing patterns:

a. P="01212121"
b. P=*“001200100"

Trace the action of the full version of the BM algorithm for the pattern P =

“amalgam” and text T = “ada_gamely_amasses_amalgam_information”.
Design and analyze pseudocode for the full version of the BM algorithm.

Write programs implementing the simplified and full versions of the BM
algorithm, and compare their performance for various inputs.

Compare the performance of the programs written in the previous exer-
cise to programs implementing NaiveStringMatcher and KMPStringMatcher
(see Exercise 20.6) for various inputs.

Section 20.4 The Karp-Rabin String-Matching Algorithm

20.15 Trace the action of KarpRabinStringMatcher for the alphanumeric strings
P =“108" and T = “002458108235" for the following values of ¢:
a.qg=7
b.g=11

652 B PARTV: Special Topics

20.16 - Adapt the Karp-Rabin string matching algorithm to the problem of find-
ing m X m patterns PO —1,00m — 1] in n X ntexts T[0:1 — 1, 0:71 — 1].

3

w
Verify recurrence relation (20.4.2).

Write a program implementing KarpRabinStringMatcher, and test its per-
formance for various input strings and randomly generated modulus g,

Section 20.5 Approximate String Matching

20.19 a. Design and give pseudocode for a dynamic programming algorithm for
approximate string matching based on recurrence relation (20.5.1).

b. Analyze the approximate string algorithm that you gave in part (a).

20.20 a. Show how the k-approximate string-matching algorithm can be mod-
ified to find the first substring of the text string T that is a k-approxima-
tion of the pattern string P.

b. Repeat part (a) for the problem of finding a/l occurrence of substrings
of T'that are k-approximations of P

20.21 Show the n X m matrix D[0:7, 0:10] that results from solving the recur-
rence relation (20.5, 1) for the pattern string P[0:7] = “patricia” and text
string P[0:8] = “patriarch”.

Section 20.6 Tries and Suffix Trees

20.22 Prove Proposition 20.6.1.

20.23 Design an algorithm for constructing a compressed trie directly from a
collection C of strings (without first constructing a standard trie and com-
pressing).

Design an algorithm for searching a compressed trie to efficiently test
whether a given pattern string belongs to the associated collection C.

Given a pattern P[Q: — 1] in string P, design and analyze an algorithm
that traces a path in a suffix tree for text string T'to determine whether P
occurs as a substring of T,

