Chess Algorithms
Theory and Practice

Rune Djurhuus
Chess Grandmaster
runed@ifi.uio.no / runedj@microsoft.com
October 3, 2012
Content

• **Complexity** of a chess game
• **History** of computer chess
• **Search trees** and **position evaluation**
• **Minimax**: The basic search algorithm
• **Pruning** techniques:
 – Alpha-Beta pruning
 – Analyze the **best move** first
 – Killer-move heuristics
 – Zero-move heuristics
• **Iterative deeper** depth-first search (IDDFS)
• Search tree **extensions**
• **Transposition** tables (position cache)
• Other challenges
• Endgame **tablebases**
• Demo
Complexity of a Chess Game

• 20 possible start moves, 20 possible replies, etc.
• 400 possible positions after 2 ply (half moves)
• 197 281 positions after 4 ply
• 7^{13} positions after 10 ply (5 White moves and 5 Black moves)
• Exponential explosion!
• Approximately 40 legal moves in a typical position
• There exists about 10^{120} possible chess games
History of Computer Chess

• Chess is a good fit for computers:
 – Clearly defined rules
 – Game of complete information
 – Easy to evaluate (judge) positions
 – Search tree is not too small or too big

• 1950: Programming a Computer for Playing Chess (Claude Shannon)
• 1951: First chess playing program (on paper) (Alan Turing)
• 1958: First computer program that can play a complete chess game
• 1981: Cray Blitz wins a tournament in Mississippi and achieves master rating
• 1989: Deep Thought loses 0-2 against World Champion Garry Kasparov
• 1996: Deep Blue wins a game against Kasparov, but loses match 2-4
• 1997: Upgraded Dee Blue wins 3.5-2.5 against Kasparov
• 2005: Hydra destroys GM Michael Adams 5.5-0.5
• 2006: World Champion Vladimir Kramnik looses 2-4 against Deep Fritz (PC chess engine)
Search Trees and Position Evaluation

• Search trees (nodes are positions, edges are legal chess moves)
• Leaf nodes are end positions which needs to be evaluated (judged)
• A simple judger: Check mate? If not, count material
• Nodes are marked with a numeric evaluation value
Minimax: The Basic Search Algorithm

• Minimax: Assume that both White and Black plays the best moves. We maximizes White’s score
• Perform a depth-first search and evaluate the leaf nodes
• Choose child node with highest value if it is White to move
• Choose child node with lowest value if it is Black to move
• Branching factor is 40 in a typical chess position

White Black
White Black
White White

ply = 0 ply = 1 ply = 2 ply = 3 ply = 4
Pruning Techniques

• The complexity of searching d ply ahead is $O(b \cdot b \cdot \ldots \cdot b) = O(b^d)$

• With a branching factor (b) of 40 it is crucial to be able to prune the search tree
Alpha-Beta Pruning

“Position is so good for White (or Black) that the opponent with best play will not enter the variation that gives the position.”

- Use previous known max and min values to limit the search tree
- Alpha value: White is guaranteed this score or better (start value: -∞)
- Beta value: Black is guaranteed this score or less (start value: +∞)
- If Beta is less than Alpha, then the position will never occur assuming best play
- If search tree below is evaluated left to right, then we can skip the greyed-out sub trees
- Regardless of what values we get for the grey nodes, they will not influence the root node score

White
Black
White
Black
White

ply = 0
ply = 1
ply = 2
ply = 3
ply = 4
Analyze the Best Move First

• Even with alpha-beta pruning, if we always start with the worst move, we still get $O(b \times b \times \ldots \times b) = O(b^d)$

• If we always start with the best move (also recursive) it can be shown that complexity is $O(b \times 1 \times b \times 1 \times b \times 1 \ldots) = O(b^{d/2}) = O(\sqrt{b^d})$

• We can **double** the **search depth** without using more resources

• Conclusion: It is very important to try to **start** with the **strongest moves first**
Killer-Move Heuristics

• Killer-move heuristics is based on the assumption that a strong move which gave a large pruning of a sub tree, might also be a strong move in other nodes in the search tree.

• Therefore we start with the killer moves in order to maximize search tree pruning.
Zero-Move Heuristics

- Alpha-Beta cutoff: “The position is so good for White (or Black) that the opponent with best play will avoid the variation resulting in that position”
- Zero-Move heuristics is based on the fact that in most positions it is an advantage to be the first player to move
- Let the player (e.g. White) who has just made a move, play another move (two moves in a row), and perform a shallower (2-3 ply less) and therefore cheaper search from that position
- If the shallower search gives a cutoff value (e.g. bad score for White), it means that most likely the search tree can be pruned at this position without performing a deeper search, since two moves in a row did not help
- Very effective pruning technique!
- Cavecats: Check and endgames (where a player can be in “trekktvang” – every move worsens the position)
Iterative Deeper Depth-First Search (IDDFS)

• Since it is so important to evaluate the best move first, it might be worthwhile to execute a shallower search first and then use the resulting alpha/beta cutoff values as start values for a deeper search.

• Since the majority of search nodes are on the lowest level in a balanced search tree, it is relatively cheap to do an extra shallower search.
Search Tree Extensions

- PC programs today can compute **14-17 ply ahead** (Deep Blue computed 12 ply against Kasparov in 1997, Hydra (64 nodes with FPGAs) computed at least 18 ply)

- It is important to *extend* the search in leaf nodes that are “unstable”

- Good *search extensions* includes all moves that gives *check* or *captures* a piece

- The longest search extensions are typically **double** the average length of the search tree!
Transposition Table

• Same position will commonly occur from different move orders
• All chess engines therefore has a transposition table (position cache)
• Implemented using a hash table with chess position as key
• Doesn’t have to evaluate large sub trees over and over again
• Chess engines typically uses half of available memory to hash table – proves how important it is
Other challenges

• Move generator (hardware / software)
 – Hydra (64 nodes Xeon cluster, FPGA chips) computed 200 millions positions per second, approximately the same as Deep Blue (on older ASIC chip sets)
 – Hydra computes 18 ply ahead while Deep Blue only managed 12 (Hydra prunes search tree better)
 – Fritz 13 chess engine (single processor/core) manages 2.3 mill moves/second on my laptop and computes 15+ ply
 – Efficient data structure for a chess board
 – Opening library suited for a chess computer
 – Position evaluation:
 • Traditionally chess computers has done deep searches with a simple evaluation function
 • But one of the best PC chess engines today, Rybka, sacrifices search depth for a complex position evaluation and better search heuristics
Endgame Tablebases

- Chess engines play endgames with 3-6 pieces left on the board perfectly by looking up best move in huge tables.
- These endgame databases are called Tablebases.
- Retrograde analyses: Tablebases are generated by starting with final positions (check mate, steal mate or insufficient mating material (e.g. king vs. king)) and then compute backwards until all nodes in search tree are marked as win, draw or loose.
- Using complex compression algorithms (Eugene Nalimov).
- All 3-5 piece endgames and some 6 piece endgames are stored in just 21 GB.
Demo

- Demo: ChessBase with chess engine Deep Rybka 4, Houdini 1.5 and Fritz 13
Thank you

Presenter: Rune Djurhuus
Contact:
 runed@ifi.uio.no
 runed@microsoft.com
Version: Autumn 2012