INF 4130 Problem Set for Dino's Lecture 2 Proposed solutions

Problem 9 from the compendium

Let
$L_{1}=\{M \mid M$ writes a $\$$ for every input $\}$
$\mathrm{L} 2=\{\mathrm{M} \mid \mathrm{M}$ writes a $\$$ for input '010' $\}$
$L_{3}=\{M \mid$ There is no y such that M writes a $\$$ for input $y\}$
Show that $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} are undecidable.
All three proofs are simple modifications of the standard proof given at Pages $74-75$ (Lecture 3, Slide 12) in the compendium.

For L1 and L2 the unmodified standard reduction will work - observe that the M' that this reduction produces does not look at its input; it simply halts for every input (and in particular for input ' 010 ') if the corresponding instance of the Halting Problem is a positive one (M halts on input x). For L3 we only need to exchange the YES and NO in standard reduction.

Problem A

Consider $L=\{M$: M skriver \$ etter < 100 skritt for ethvert input $\}$ Is L undecidable? Justify your answer (produce an informal proof).

L is decidable. The decision algorithm ML is a modification of the Universal Turing Machine. ML generates all possible inputs of length <100 (notice that there are finitely many, since by convention the size of the input alphabet is constant). For each input Ml simulates M for at most 100 steps and answers YES and halts if M halts. If M does not halt for any of the inputs, ML halts and answers NO.

