
 

INF 4130: Execises to Matchings and Flow 

September 14 and 15, 2017 
With answers 

Notice: The words "vertex" and "node" means the same in this note. 

Exercise 1 
Solve Exercise 14.4 in the textbook (B&P) (and sketch a data structure for Exercise 14.5). 

The exercise is to show that the Hungarian Algorithm can be implemented in time O(n3) for a bipartite graph 

 G = (X, Y, E), with |X| = |Y| = n.  

 

As indicated in the exercise 14.4, the full algorithm consists of an outer loop where we repeatedly find and apply 

augmenting paths. Applying an augmenting path increases the size of our matching by one edge. The step of the 

outer loop can therefore be executed at most n times. 

  

In the step of the outer loop we first find an unmatched node r and build a tree with this node as a root.  During 

this tree building we may have to go through all edges from red nodes, which amounts to O(n
2
) edges.  Thus, if 

we can find a data-structure that bound the work for each such arc to O(1), we are done. The most costly 

operation for such an arc occurs if it leads to a matched node outside the current tree.  Then we should include 

both end-nodes of the found matching edge into the tree, and include the red one of these into a set of unexplored 

red nodes.  This set may be stored as a stack, so that adding one and taking (a random one) out both take time 

O(1). Also other necessary updating during this step takes time O(1) if we have the following data in each node 

(in addition to its list of neighbours). 

 
class Node  

{  

   Boolean isInTree = FALSE; // True if included in the list 

   Node matchedWith = null; // If matched, the node it is matched to 

   Boolean proc isMatched { return matchedWith != null; }  

   Node next;               // A singularly linked list to implement the stack 

   Node parentInTree      // Pointer backwards toward the root 

   < List of neighbours >;  

} 

Many of these variables will have to be reset in each node before each step in the outermost loop, so one should 

have an easy way to access all nodes. Then this resetting will not affect the worst case time of the 

implementation.  The same is true for “using” an augumanting path as soon as we have found one. We may 

notice that the running time of this implementation can also be given as O(n*m), where m is the number of edges 

in the graph and  m >= n. This may be considerably smaller than O(n
3
) 

 
 
Exercise 2 
Solve Exercise 14.6 in the textbook. 

We start with the graph given in the exercise, at the top of the figure to the right.  

We number the vertices from left to right x1, x2, …, x5 and y1, y2, …, y5.  We start by 

growing a tree from x5, and immediately get an augmenting path (of one edge) if we 



look at the edge (x5, y4). Remember that an edge with unmatched vertices at both ends is a (simplest 

possible) augmenting path. 

After this augmentation has been done, we can start building a tree from for instance x4, and one 

possibility is then that we find the augmenting path  x4-y3-x3-y2 (dotted lines in graph number two). 

Applying this augmenting path we get the third graph, and if we then build a tree from x2, we sooner 

or later find the augmenting path indicated by the dotted lines in graph number four. Applying that 

augmenting path results in the perfect matching of graph number five. 

 
Exercise 3 
Assume |X| = |Y|. Then show that if we have found a subset S of X with |Γ(S)| < |S|, we can also easily 

find a subset of T of Y with |Γ(T)| < |T|. 

This is actually easy to show. Assume we a subset S of X such that Γ(S) has fewer vertices than S, as 

shown in the figure below. By the definition of Γ(S) no edge can go between S and T = Y - Γ(S). 

Therefore Γ(T) must be a subset (not necessarily proper) of X - S, and thereby be smaller than T. 

 

Exercise 4 

Question 4.a 
Show that, for general graphs, any “node cover” (a subset of the nodes that “covers” all the edges) will 

never have fewer nodes than there are edges in a matching. 

 

Assume that a graph G has a matching M, and a node cover NC.  Then each edge in M must have at 

least one of its end nodes in NC (otherwise NC did not cover all edges).  The end nodes of an edge in 

M must be separate from the end nodes of any other edge in M.  Thus the number of  nodes in NC 

must be at least as large as the number of edges i  

Question 4.b 
Look at some examples with bipartite graphs, and observe that in such graphs you can always find a 

matching and a node cover of the same size. (It is in fact not difficult to prove this by looking at the 

situation when the Hungarian stops after having built alternating trees from all unmatched node in X, 

and no augumenting path is found. The above fact can be used to prove that a certain match is as large 

as possible, also for cases with |X| ≠ |Y|). 
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As an example, we can look at the graph from Exercise 3. A cover could be x1, y4 and y5, which is the 

union of  Γ(T) and Γ(S).  This also indicates how a node cover can be found when the matching 

algorithm stops.  A matching with three edges is easy to find, and we then know that this has as many 

edges as possible. 

Question 4.c 
Find an example showing that, in general graphs, one cannot always find a node cover and a matching 

of the same size. 

 

Finding a graph where the maximum matching and the minimum vertex cover are of 

different size is easy. The canonical example of a non-bipartite graph, the odd loop, 

does the trick. In a C5, for instance, the largest matching has two edges, while the 

smallest vertex cover has three nodes.  

Exercise 5 
We are given the following graph G, and given matching M. You shall use the maximum matching 

algorithm for general graphs to find a maximum matching for G, by starting with M.  Start at node f as 

the root, then look at the edge f-c getting also c-h into the tree. Then look at edges h-g and h-i, which 

will both increase the tree by two nodes each.  

Which nodes are now red and blue (assuming that the root f is red)?   

Then look at the unmatched edge out of m.  What will happen then? Proceed with choices so that you 

end up finding an augumenting path between d and f (even though one between b and f or j and f is 

closer by).  Show the resulting matching after you have "used" this augumenting path. Finally, decide 

whether this matching can be increased further. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

When “using” the found augumenting path (above), the large red node R (made from merging the 

nodes  h, g, k, i, m  in an earlier step), must now be unwrapped, so that we can see that the correct 

alternating path through it (from the d back to f) is:   
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           g, k, m, i, h. 

 

 

 

The resulting matching will be: 

 

 

 

 

 

 

Thus, the size of the matching is increased by one.  To decide whether it can be increased further, we 

must repeat the tree-building process from all unmatched nodes (that is, from j and from b). We would 

then observe that no situation like the one in node d in last step (finding an edge from a red to an 

uncolored node) would occur, and the matching is thus as large as we can get it.  As there are only two 

unmatched nodes left, we could also see this by observing that there is no augumenting path between j 

and b (but in general it would take “exponential time” to perform such a check in the naïve direct way). 

Exercise 6 
To study the max flow algorithm, go through the example in Figure 14.9 in detail (B&P). See 

introduction at the bottom of page 439. Note that there are many typos in these graphs in early editions 

of the book, but most of them should now be corrected.  Also note that the first graph in the left 

column is N (and not Nf ), and that in the right column step 6 has the final flow, while the he last 

graph is N itself with the (original) capacities , and where the cut is displayed with dotted edges. 

Left to the class 

Known typos in early editions of the textbook are: 
Step 1:  Edge 4-7 in Nf should be dotted. 
Step 2—7: Edge 4-7 shoud be reversed in all Nfs. 
Step 2: Inner edges in the flow graph should be removed. 
Step 2: Edge 0-3 in Nf should not be dotted. 
Step 7: Vertex 5 in N should have a double circle, and an edge 2-5 with flow 1 should be added 

to the flow graph. 
Step 7: The sets should be X = {0,1,2,3,5}, and Y = {4,6,7}. 

 
The figure with typos corrected is included at the end of this document.  
 

Exercise 7 (Question 7.c – 7.f can be left to the students) 
Study figure 14.10 on page 444 of the text book (B&P). (Note that there are typos in at least some 

editions of the book: The edge (x1, y2) in the upper graph should be removed.) We now look at the 

 

 

 

  

 

 

 
 

 
 

 



duality between finding a maximum matching in the upper graph, and finding a maximum flow in the 

lower network (graph). 

 
Question 7.a 

Look at the following lemma, and explain why it is correct (Hint: This has also been commented on in 

the lectures, and it relies on the way the algorithm works):  

 

Lemma In a network with integer capacities one can always find a flow that is both maximum 

and integer, and the Ford-Fulkerson-algorithm will always find such a flow. 
 

In other words:  If the capacities are integer, we never have to split a flow so that for instance ½ goes 

down one edge and ½ down another to achieve a maximum flow. This means that if all capacities are 1, 

we get a maximum flow for the network with either full (1) or no (0) flow in each edge. Such a flow 

induces a subset of the edges: those with full flow. 

FordFulkerson never splits an integer flow into non-integer flows, and proves optimality by showing a 

minimum cut with the same capacity as the flow. 

Question 7.b 
Use the lemma to explain that finding a maximum matching in the upper graph in Figure 14.10 is the 

same as finding a maximum flow in the lower network. 

With capacity 1, flow is either 0 or 1. A flow of 1 corresponds to the edge being part of the matching.  

Question 7.c 
Assume that you in Figure 14.10 have the matching {(x2, y1), (x4, y3), (x5, y5)}, and show what flow f 

this corresponds to in the lower network. 

Left to the students or the class 

Question 7.d 
Draw N(f) (the f-derived network) for the flow from 6.c and check that looking for an f-augmenting 

path from s to t in this graph corresponds to looking for a (matching) augmenting path in the upper 

graph, with the given matching. 

Left to the students or the class 

Question 7.e 

Use an f-augmenting path found (for instance (x1, y1, x2, y4) in the graph and (s, x1, y1, x2, y4, t) in 

the network) to augment the matching/flow, and check that these operations are duals of each other. 

Verify that you end up in the situation shown in the lower network in figure 14.10 (where flows are 

indicated). 

Left to the students or the class. 

Question 7.f 
Draw N(f) for this new flow, and show that the flow is a maximum flow by showing a cut with this 

capacity (4). Then use the method from Exercise 4 above to find a vertex cover of four vertices 

covering all edges in the upper graph, thereby showing that the matching is a maximum matching. 

Finally show how the cut and this vertex cover are related. 

Left to the students or the class. 



Exercise 8 (if you have time)  
Show that the following three conditions on undirected graphs are equivalent: 

- The graph is bipartite 

- The graph is two-colourable 

- The graph has no odd cycles 

Left to the students or the class. 

  



 

  



 

 

 

 

 

 


