
INF 4130 Exercise set 8, 2017 
w/solutions 

Exercise 1 
Solve exercise 6.19 in Mark Allen Weiss Algorithms and Datastructures in Java (the INF 2220 book). 

6.19 
Merge the two leftist heaps in Figure 6.58 
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The following trees are merged 

The result is as follows, after merging and swapping, the original right path marked with red. 
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Exercise 2 
Solve exercise 6.25 in MAW. 

6.25:  

We can perform buildHeap in linear time for leftist heaps by considering each element as a one-

node leftist heap, placing all these heaps on a queue. and performing the following step: Until 

only one heap is on the queue, dequeue two heaps, merge them and enqueue the result.  

1. Prove that this algorithm is O(N) in the worst case. 
2. Why might this algorithm be preferable to the algorithm described in the text? 

 

We are technically allowed to construct a normal binary heap (using the normal  

buildHeap()-method that percolatesDown all subtree roots, starting at the bottom.) Convince 

yourself that this is the case. The following method, however, constructs a tree that is more leftist:  
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Insert the nodes into a queue. 

(Numbers indicate initial place 

in queue, not priority [key].) 
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Merge 1 and 2 (leftist manner, 

maintain heap property!) and 

insert at end of queue. 

Merge 3 and 4 and insert. 
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The running time is given by the following expression. It describes the time it takes to merge two and 

two single nodes into 2-node trees, plus the time it takes to merge two and two 2-node trees into 

4-node trees, and so on. The number of trees will halve in each step, and the running time for each 

merge follows from the height of the trees, which increases by one in each step. (See the figure 

above) 
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We omit the O’s and write 

𝑛

2
∙ 1 +  

𝑛

4
∙ 2 +

𝑛

8
∙ 3 + ⋯ 

 ⇕ 

The worst case is when the number of elements, 
n, is a power of 2. If this is the case, all trees will 
be as large as possible in each step, so let Let 𝑛 =
2𝑘, for some k. 

2𝑘

2
∙ 1 +  

2𝑘

4
∙ 2 +

2𝑘

8
∙ 3 + ⋯ 

 ⇕ 
Since 2k/2 = 2k-1 and 2k/4 = 2k/22 = 2k-2, and so on, 
we rewrite 

2𝑘−1 ∙ 1 +  2𝑘−2 ∙ 2 + 2𝑘−3 ∙ 3 + ⋯ 

 ⇕ We rewrite it using summation form 

∑ 2𝑘−𝑖 ∙ 𝑖

𝑘−1

𝑖=1

 

 ⇕ 

A trick we can use when we work with sums where 
we feel that the terms will cancel each other out in 
a telescoping manner, is to write the sum as Σ =
2Σ − Σ. (2x minus x is x, no matter what x is.) [This 
is a trick one just needs know about.] 
 
It is probably easier to see which terms cancel 
each other out if we set it up like this on two lines: 
 

Σ = 2Σ
  −Σ

 

 
and write out the terms, but first we just multiply 
our original sum by 2 (we multiply each term by 2) 
2 ∙ 2𝑘−1 ∙ 1  + 2 ∙ 2𝑘−2 ∙ 2 + 2 ∙ 2𝑘−3 ∙ 3 + ⋯ 

 
+ 2 ∙ 2𝑘−(𝑘−1) ∙(k-1) 

 
Which is the same as 

2𝑘 ∙ 1 + 2𝑘−1 ∙ 2 + 2𝑘−2 ∙ 3 + ⋯ 
 

+ 22 ∙(k-1) 

 
 
 



 
We then subtract, like this 

2𝑘 ∙ 1 + 2𝑘−1 ∙ 2 + 2𝑘−2 ∙ 3 + 
⋯ 

 
+ 22 ∙(k-1)   

 − 2
𝑘−1 ∙ 1 − 2

𝑘−2 ∙ 2 − 
⋯ 
 

  − 2𝑘−(𝑘−1) ∙(k-1) 

 
We get (the last term we subtract does not cancel 
with anything) 

2𝑘 ∙ 1 + 2𝑘−1 ∙ 1 + 2𝑘−2 ∙ 1 + 
⋯ 

 
+ 22 ∙1   

         − 2𝑘−(𝑘−1) ∙(k-1) 

 
Writing it out in the opposite direction  

22 ∙ 1 + 23 ∙ 1  + 
⋯ 
 

+ 2𝑘−1 ∙1 + 2𝑘 ∙1   

         − 2𝑘−(𝑘−1) ∙(k-1) 

we see that this is the same as 
 

(∑ 2𝑖

𝑘

𝑖=2

) − 2𝑘−(𝑘−1)(𝑘 − 1) 

 ⇕ Since 2𝑘−(𝑘−1) =  2 , we get 

(∑ 2𝑖

𝑘

𝑖=2

) − 2(𝑘 − 1) 

 ⇕ 

We use the Σ = 2Σ − Σ trick, again… (on the sum) 
 
This time we are left only with the last term 
multiplied by 2 and minus the first term: 

2 ∙ 2𝑘 = 2𝑘+1 and = −22 = −4 

(2𝑘+1 − 4) − 2(𝑘 − 1) 

 ⇕ Factoring out 2 

2(2𝑘 − 2) − 2(𝑘 − 1) 

 ⇕ 
Recall that we chose the number of elements as a 

power of 2. Since 𝑛 = 2𝑘 we have 𝑘 = log 𝑛 

2(2log 𝑛 − 2) − 2(log 𝑛 − 1) 

 ⇕  

2(𝑛 − 2) − 2(log 𝑛 − 1) 

 ⇕ 
We multply out, and since 𝑛 > log 𝑛, the 
expression for the running time (𝑂(𝑛)) follows 

2𝑛 − 4 − 2 log 𝑛 + 2 = 2𝑛 − 2 log 𝑛 − 2 = 𝑂(𝑛) . 

  



Exercise 3 
Solve exercise 6.30 in MAW. 

 6.30 

 Prove that a binomial tree Bk has binomial trees B1, B2, … , Bk-1 as children of the root.  

This should be obvious (“one can easily see…”), but we give a short induction proof. (The trees are 

constructed in an inductive manner that lends itself well to this proof technique.) 

In induction proofs we show that something holds for a fixed basis, for instance that something (a 

formula) is true for x = 0. We then assume that the same something (the formula) holds for x = i and 

show that this implies that it also holds for x = i + 1, this is called the induction step. Together the 

basis and the step show that what holds for the basis (x = 0) also holds for the next value (x = 1), and 

so on, and so on. 

Basis:   B1 has B0 as a child (subtree) from the root. (B1 is simply constructed by connecting a B0  to  

another B0, so this is obviously true.) 

Step:  Assume Bi has B0,...,B(i-1) as separate subtrees of the root.    

 We must show that this implies that B(i+1) has B0,...,Bi as subtrees of the root. 

Our B(i+1) is constructed by connecting a Bi to the root of another Bi, therefore B(i+1) will consist of one 

Bi that we just connected to the root of the other Bi, plus the subtrees that already were connected 

to the root of the other Bi (the root one), these are (by the assumption): B0,...,B(i-1). Therefore B(i+1) 

must have the subtrees B0,...,Bi. We already have B0,...,B(i-1) (making up the first Bi) and just connected 

a whole new Bi. 

  



Exercise 4 
Write a non-recursive implementation of  merge()for leftist heaps. 

We do this kind of merge with a two pass method. 

1) The nodes in the right paths of the heaps can be viewed as lists. the root is the head, the .right 
pointers in the nodes is next. 
 

The lists are merged (elements in lexicographic order). Always choose the smallest and copy 
into a new tree (a new list). 

2) Traverse the new path (list), from the end towards the root (we need a pointer this way – 
doubly linked lists). Check that the leftist-property holds (null path lengths of children), swap 
left and right children if property is violated. 

Rough pseudo code can be something like this: 

function merge(h1,h2) 

var list result 

while h1 <> nil and h2 <> nil 

if h1.key <= h2.key 

append h1.first to result   // assuming .first works 

h1 = h1.right   

else 

append h2.first to result 

h2 = h1.right 

if h1 <> nil 

append h1 to result 

if h2 <> nil 

append h2 to result 

var elem node 

elem = result.last 

while elem <> result.first 

if elem.left.npl < elem.right.npl 

swapChildren(elem); 

elem = elem.parent    // assuming a parent pointer 

return result 

end 



Exercise 5 
Professor Pinocchio claims that the height of an N-node Fibonacci heap is O(log N). Prove the 

professor wrong by showing that for every positive integer N, there is a sequence of Fibonacci heap 

operations constructing a heap that is one long chain of N nodes. 

Try using the applet on  
http://www.cs.yorku.ca/~aaw/Jason/FibonacciHeapAnimation.html 

to construct this chain, and to get a feel for Fibonacci heaps. 

A kind of induction is also at the basis of this construction. We build our chain by using the structure 

of binomial trees as model. 

Our basis is a tree consisting of two nodes. We can construct this tree by inserting three nodes in an 

empty heap, and the run deleteMin. 

The step in our construction (induction) consists on inserting three nodes with a lower key than the 

nodes already in the heap, name them a, b, c (sorted by key, increasing order), and run deleteMin, 

this results in a tree with two branches, the root is b, one branch is the tree we started with, the 

other branch is c. Now erase c. Repeat as many times as necessary. 

Exercise 6 
Discuss the notions of average and amortized time briefly. 

Left for the group to discuss. Look for instance at series of operations on an imaginary data structure 

with the following running times: 

Series 1: 1, 1, 1, 3, 2, 1 

Series 2: 1, 2, 3, 1, 1, 1 

Series 3: 100, 100, 100, 1, 1, 1 

Assume the operations are three inserts and three deletes, and look at possible subsets of the series, 

for instance the first four operations. 

 

http://www.cs.yorku.ca/~aaw/Jason/FibonacciHeapAnimation.html

