
INF 4130 Exercise set 8, 2017
w/solutions

Exercise 1
Solve exercise 6.19 in Mark Allen Weiss Algorithms and Datastructures in Java (the INF 2220 book).

6.19
Merge the two leftist heaps in Figure 6.58

2

11

17 12

18

5

8

15

4

9

10 18

31

6

11

21

The following trees are merged

The result is as follows, after merging and swapping, the original right path marked with red.

2

11

17 12

18

5

8

15

4

9

10 18

31

6

11

21

Exercise 2
Solve exercise 6.25 in MAW.

6.25:

We can perform buildHeap in linear time for leftist heaps by considering each element as a one-

node leftist heap, placing all these heaps on a queue. and performing the following step: Until

only one heap is on the queue, dequeue two heaps, merge them and enqueue the result.

1. Prove that this algorithm is O(N) in the worst case.
2. Why might this algorithm be preferable to the algorithm described in the text?

We are technically allowed to construct a normal binary heap (using the normal

buildHeap()-method that percolatesDown all subtree roots, starting at the bottom.) Convince

yourself that this is the case. The following method, however, constructs a tree that is more leftist:

1 2 3 4 5 6 7 8

Insert the nodes into a queue.

(Numbers indicate initial place

in queue, not priority [key].)

1

2 3 4 5 6 7 8

Merge 1 and 2 (leftist manner,

maintain heap property!) and

insert at end of queue.

Merge 3 and 4 and insert.

6

5

7

8

1

2

3

4

5, 6 and 7, 8 (5.key < 6.key)

6

5

7

8

3

4

1

2

(1,2) and (3,4)

7

8

6

5

(5,6) and (7,8)

3

4

1

2

(1,2,3,4) and (5,6,7,8)

7

8

6

5

3

4

1

2

1

2

3

4 5 6 7 8

The running time is given by the following expression. It describes the time it takes to merge two and

two single nodes into 2-node trees, plus the time it takes to merge two and two 2-node trees into

4-node trees, and so on. The number of trees will halve in each step, and the running time for each

merge follows from the height of the trees, which increases by one in each step. (See the figure

above)

𝑛

2
∙ 𝑂(1) +

𝑛

4
∙ 𝑂(2) +

𝑛

8
∙ 𝑂(3) + ⋯ = 𝑂(𝑛) .

We omit the O’s and write

𝑛

2
∙ 1 +

𝑛

4
∙ 2 +

𝑛

8
∙ 3 + ⋯

 ⇕

The worst case is when the number of elements,
n, is a power of 2. If this is the case, all trees will
be as large as possible in each step, so let Let 𝑛 =
2𝑘, for some k.

2𝑘

2
∙ 1 +

2𝑘

4
∙ 2 +

2𝑘

8
∙ 3 + ⋯

 ⇕
Since 2k/2 = 2k-1 and 2k/4 = 2k/22 = 2k-2, and so on,
we rewrite

2𝑘−1 ∙ 1 + 2𝑘−2 ∙ 2 + 2𝑘−3 ∙ 3 + ⋯

 ⇕ We rewrite it using summation form

∑ 2𝑘−𝑖 ∙ 𝑖

𝑘−1

𝑖=1

 ⇕

A trick we can use when we work with sums where
we feel that the terms will cancel each other out in
a telescoping manner, is to write the sum as Σ =
2Σ − Σ. (2x minus x is x, no matter what x is.) [This
is a trick one just needs know about.]

It is probably easier to see which terms cancel
each other out if we set it up like this on two lines:

Σ = 2Σ
 −Σ

and write out the terms, but first we just multiply
our original sum by 2 (we multiply each term by 2)
2 ∙ 2𝑘−1 ∙ 1 + 2 ∙ 2𝑘−2 ∙ 2 + 2 ∙ 2𝑘−3 ∙ 3 + ⋯

+ 2 ∙ 2𝑘−(𝑘−1) ∙(k-1)

Which is the same as

2𝑘 ∙ 1 + 2𝑘−1 ∙ 2 + 2𝑘−2 ∙ 3 + ⋯

+ 22 ∙(k-1)

We then subtract, like this

2𝑘 ∙ 1 + 2𝑘−1 ∙ 2 + 2𝑘−2 ∙ 3 +
⋯

+ 22 ∙(k-1)

 − 2
𝑘−1 ∙ 1 − 2

𝑘−2 ∙ 2 −
⋯

 − 2𝑘−(𝑘−1) ∙(k-1)

We get (the last term we subtract does not cancel
with anything)

2𝑘 ∙ 1 + 2𝑘−1 ∙ 1 + 2𝑘−2 ∙ 1 +
⋯

+ 22 ∙1

 − 2𝑘−(𝑘−1) ∙(k-1)

Writing it out in the opposite direction

22 ∙ 1 + 23 ∙ 1 +
⋯

+ 2𝑘−1 ∙1 + 2𝑘 ∙1

 − 2𝑘−(𝑘−1) ∙(k-1)

we see that this is the same as

(∑ 2𝑖

𝑘

𝑖=2

) − 2𝑘−(𝑘−1)(𝑘 − 1)

 ⇕ Since 2𝑘−(𝑘−1) = 2 , we get

(∑ 2𝑖

𝑘

𝑖=2

) − 2(𝑘 − 1)

 ⇕

We use the Σ = 2Σ − Σ trick, again… (on the sum)

This time we are left only with the last term
multiplied by 2 and minus the first term:

2 ∙ 2𝑘 = 2𝑘+1 and = −22 = −4

(2𝑘+1 − 4) − 2(𝑘 − 1)

 ⇕ Factoring out 2

2(2𝑘 − 2) − 2(𝑘 − 1)

 ⇕
Recall that we chose the number of elements as a

power of 2. Since 𝑛 = 2𝑘 we have 𝑘 = log 𝑛

2(2log 𝑛 − 2) − 2(log 𝑛 − 1)

 ⇕

2(𝑛 − 2) − 2(log 𝑛 − 1)

 ⇕
We multply out, and since 𝑛 > log 𝑛, the
expression for the running time (𝑂(𝑛)) follows

2𝑛 − 4 − 2 log 𝑛 + 2 = 2𝑛 − 2 log 𝑛 − 2 = 𝑂(𝑛) .

Exercise 3
Solve exercise 6.30 in MAW.

 6.30

 Prove that a binomial tree Bk has binomial trees B1, B2, … , Bk-1 as children of the root.

This should be obvious (“one can easily see…”), but we give a short induction proof. (The trees are

constructed in an inductive manner that lends itself well to this proof technique.)

In induction proofs we show that something holds for a fixed basis, for instance that something (a

formula) is true for x = 0. We then assume that the same something (the formula) holds for x = i and

show that this implies that it also holds for x = i + 1, this is called the induction step. Together the

basis and the step show that what holds for the basis (x = 0) also holds for the next value (x = 1), and

so on, and so on.

Basis: B1 has B0 as a child (subtree) from the root. (B1 is simply constructed by connecting a B0 to

another B0, so this is obviously true.)

Step: Assume Bi has B0,...,B(i-1) as separate subtrees of the root.

 We must show that this implies that B(i+1) has B0,...,Bi as subtrees of the root.

Our B(i+1) is constructed by connecting a Bi to the root of another Bi, therefore B(i+1) will consist of one

Bi that we just connected to the root of the other Bi, plus the subtrees that already were connected

to the root of the other Bi (the root one), these are (by the assumption): B0,...,B(i-1). Therefore B(i+1)

must have the subtrees B0,...,Bi. We already have B0,...,B(i-1) (making up the first Bi) and just connected

a whole new Bi.

Exercise 4
Write a non-recursive implementation of merge()for leftist heaps.

We do this kind of merge with a two pass method.

1) The nodes in the right paths of the heaps can be viewed as lists. the root is the head, the .right
pointers in the nodes is next.

The lists are merged (elements in lexicographic order). Always choose the smallest and copy
into a new tree (a new list).

2) Traverse the new path (list), from the end towards the root (we need a pointer this way –
doubly linked lists). Check that the leftist-property holds (null path lengths of children), swap
left and right children if property is violated.

Rough pseudo code can be something like this:

function merge(h1,h2)

var list result

while h1 <> nil and h2 <> nil

if h1.key <= h2.key

append h1.first to result // assuming .first works

h1 = h1.right

else

append h2.first to result

h2 = h1.right

if h1 <> nil

append h1 to result

if h2 <> nil

append h2 to result

var elem node

elem = result.last

while elem <> result.first

if elem.left.npl < elem.right.npl

swapChildren(elem);

elem = elem.parent // assuming a parent pointer

return result

end

Exercise 5
Professor Pinocchio claims that the height of an N-node Fibonacci heap is O(log N). Prove the

professor wrong by showing that for every positive integer N, there is a sequence of Fibonacci heap

operations constructing a heap that is one long chain of N nodes.

Try using the applet on
http://www.cs.yorku.ca/~aaw/Jason/FibonacciHeapAnimation.html

to construct this chain, and to get a feel for Fibonacci heaps.

A kind of induction is also at the basis of this construction. We build our chain by using the structure

of binomial trees as model.

Our basis is a tree consisting of two nodes. We can construct this tree by inserting three nodes in an

empty heap, and the run deleteMin.

The step in our construction (induction) consists on inserting three nodes with a lower key than the

nodes already in the heap, name them a, b, c (sorted by key, increasing order), and run deleteMin,

this results in a tree with two branches, the root is b, one branch is the tree we started with, the

other branch is c. Now erase c. Repeat as many times as necessary.

Exercise 6
Discuss the notions of average and amortized time briefly.

Left for the group to discuss. Look for instance at series of operations on an imaginary data structure

with the following running times:

Series 1: 1, 1, 1, 3, 2, 1

Series 2: 1, 2, 3, 1, 1, 1

Series 3: 100, 100, 100, 1, 1, 1

Assume the operations are three inserts and three deletes, and look at possible subsets of the series,

for instance the first four operations.

http://www.cs.yorku.ca/~aaw/Jason/FibonacciHeapAnimation.html

