
INF	4130	Exercise	set	2,	2016	
w/proposed	solutions	
	

We	start	with	a	 few	short	exercises	on	algorithm	running	 times,	and	 running	 time	analysis.	As	you	
know	we	 usually	 use	O-notation	 (more	 correctly,	 asymptotic	 notation)	 for	 running	 times.	 A	 short	
note	on	the	course	web	page	describes	four	variants	of	asymptotic	notation:	O,	Θ,	Ω	and	o.	

Exercise	1	
a) Show	that	n+3	is	O(n).	

For	all	n	>	3	we	have	n+n	=	2n	>	n+3,	such	that	n+3	=	O(2n)	=	O(n)	.	
b) Show	that	2n	log	n	is	O(n2)	.	

For	n	>	0	we	have	n	>	log	n,	such	that	2n	log	n	=	O(2n*n)	=	O(n2)	.	
c) Is	2n+1		=	O(2n)	?	

For	which	constant	c	is	2n+1	£	c	2n?	

d) Is	10n	+16n
3

2
	=	O n2 	?	

No,	for	alle	constants	c,	there	is	an	n	such	that	n3	>	c×	n2	.	(n3	grows	faster	than	n2.)	

Exercise	2	 	
a) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	O(n!)	?			

Not	much,	we	only	know	that	the	running	time	is	lower	than	c×	n!	,	for	some	constant	c,	but	the	
running	time	may	in	principle	lie	anywhere	in	the	interval	(0,	c×	n!],	so	it	doesn’t	tell	us	a	whole	
lot.	 (Usually	one	would	probably	mean	that	 the	running	time	 is	close	to	n!,	 in	some	sense,	but	
mathematically	O(n!)	need	not	be	a	tight	bound.)	

b) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	Ω(n)	?	

Again,	not	much.	We	only	know	that	the	running	time	is	larger	than	c×n,	for	some	constant	c.	The	
running	time	may	in	principle	lie	anywhere	in	the	interval	(c×	n,	¥),	not	really	telling	us	much.	

c) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	Θ	(2n)	?	

Here	we	know	a	bit	more,	our	analysis	has	probably	been	a	bit	more	thorough	than	 in	the	 last	
two	cases,	but	the	situation	is	far	from	perfect:	the	running	time	of	our	algorithm	grows	as	2n,	an	
exponential	growth	of	the	running	time	as	the	size	of	the	input	grows.	

d) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	O(n2)	?	

Here	we	 know	 that	 the	 running	 time	 is	 lower	 than	n2,	 it	 can	 be	 constant,	 sub-linear	 (log	 n	 or	
similar),	linear	(n),	or	close	to	n2.	N	real	life	n2	is	a	fairly	tight	limit	—	there	isn´t	that	much	room	
between	0	and	n2,	so	we	have	a	fairly	good	understanding	of	algorithm	running	time.	

e) The	statement	“This	algorithm	has	a	running	time	of	at	least	O(n2).”	may	seem	odd.	Does	it	make	
sense?		

The	running	time	of	the	algorithm	is	“larger	than	lower	than	c×n2”?	If	we	want	to	indicate	that	the	
running	time	lies	above	n2,	we	should	rephrase.	

	

We	 now	 continue	with	 a	 few	 exercises	 on	 string	 search,	 partially	 from	 the	 textbook.	 Spend	 some	
time	repeating/discussing	why/how	the	different	shift	strategies	of	Knuth-Morris-Pratt	and	simplified	
Boyer-Moore	(Horspool)	work.	

Exercise	3	(Exercise	20.3	in	Berman	&	Paul)	
Simulate	CreateNext	page	637-8,	use	the	pattern	“abracadabra”.	

First,	note	that	there	 is	a	 typo	 in	the	CreateNext	routine	 in	the	book.	Line	8	 from	below	should	be		
"j	<-	Next[j]"	(not	"j	<-	Next[j-1]").	
Otherwise	Next	for	P	=	"abracadabra"	is:	

a b r a c a d a b r a
0 0 0 0 1 0 1 0 1 2 3

What	about	the	pattern	P’="abcdef"?	It	has	no	repeated	letters	(thus	no	overlap).	How	is	the	pattern	
moved	now?	

Exercise	4	
Calculate	 the	 array	 Shift[a:z]	 for	 the	 patterns	 P	 =	 "announce"	 and	 P’	 =	 "honolulu"	 -	 simulate	
CreateShift	spage	639.	

"Bad	character	shift"	for	P	=	"announce"	is	calculated	like	this:	

P[0] = a Shift[P[0]] = 8 - 0 - 1 = 7
P[1] = n Shift[P[1]] = 8 - 1 - 1 = 6
P[2] = n Shift[P[2]] = 8 - 2 - 1 = 5
P[3] = o Shift[P[3]] = 8 - 3 - 1 = 4
P[4] = u Shift[P[4]] = 8 - 4 - 1 = 3
P[5] = n Shift[P[5]] = 8 - 5 - 1 = 2
P[6] = c Shift[P[6]] = 8 - 6 - 1 = 1

The	answer	is	therefore.	All	other	symbols	in	the	alphabet	get	a	Shift	value	of	8.	

Shift[a] = 7
Shift[n] = 2
Shift[o] = 4
Shift[u] = 3
Shift[c] = 1
Shift[*] = 8 (* indicates	the	rest	of	our	alphabet, {a,…,z}∖{a,n,o,u,c}.)

For	P’	=	"honolulu"	the	answer	is:	

Shift[h] = 7
Shift[o] = 4
Shift[n] = 5
Shift[l] = 1
Shift[u] = 2
Shift[*] = 8	

	

Exercise	5	
Draw	uncompressed	suffix	trees	for	the	strings	"BABBAGE"	and	"BAGLADY".	And	check	if	"BAG"	is	a	
common	substring.	Can	you	make	do	with	only	one	tree?	

BABBAGE E BAGLADY Y
 GE DY
 AGE ADY
 BAGE LADY
 BBAGE GLADY
 ABBAGE AGLADY
 BABBAGE BAGLADY

The	two	suffix	trees	are	as	follows.	Checking	if	"bag"	is	a	common	substring	is	done	bay	checking	for	
it	in	both	trees.	It	can	of	course	also	be	done	with	one	tree,	we	just	insert	suffixes	for	both	strings	in	
the	same	tree,	and	mark	their	origins	in	some	suitable	way.	

	

	

a	

d	

y	

g	

l	

a	

d	

y	

g	

l	

a	

d	

y	

l	

a	

d	

y	

y	b	

a	

d	

y	

a	

g	

l	

d	

y	

	

a	 b	 e	 g	

b	

b	

a	

g	

e	

g	

e	 b	

b	

a	

g	

e	

a	

g	

e	

b	

a	

g	

e	

g	

g	

	

Extra	
NB:	some	background	knowledge	on	regular	languages	and	NFAs	and	DFA	is	needed.	

As	a	general	problem	setting	we	may	want	to	search	for	a	string	matching	a	given	regular	expression	
R	in	a	longer	string	S.	We	may	then	reformulate	the	problems	as	searching	for	a	string	matching	the	
regular	 expression	 “.*R”	 at	 the	 start	 of	 S.	 Here	 “.”	 Means	 any	 symbol	 in	 our	 alphabet,	 and	 the	
asterisk	means	that	what	comes	before	 it	may	be	repeated	zero	or	more	times.	So	“.*”	 just	means	
that	anything	can	come	before	the	string	we	really	want	(expressed	by	R),	including	the	empty	string.	

We	may	 solve	 the	problem	as	 follows:	 first	 construct	 an	NFA	 (non-deterministic	 finite	 automaton)	
corresponding	to	“.*R”.	This	can	be	done	intuitively,	or	by	a	so-called	Thompson-construction.	Then	
we	 transform	 this	 non-deterministic	 machine	 into	 a	 DFA	 (deterministic	 finite	 automaton)	 in	 the	
standard	way.	

This	DFA	is	easily	transformed	into	a	normal	computer	program	that	reads	S	in	linear	time,	and	every	
time	we	arrive	in	a	final	state	for	the	DFA,	we	know	that	we	have	read	something	that	matches	with	
R.	

QUESTION:	Why	is	this	method	not	as	fast	as	it	might	seem?	What	limits	it´s	running	time?	When	will	
it	be	fast?	

The	 interesting	 part	 here	 is	 that	 if	 we	 have	made	 the	 DFA	 for	 “.*R”,	 the	 algorithm	 for	 finding	 R-
matches	in	S	is	quick.	Designing	the	NFA	for	“.*R”	is	also	straight	forward	and	quick.	What	may	make	
the	 algorithm	 slow	 is	 the	 size	 of	 the	 DFA	 (and	 therefore	 the	 time	 to	 construct	 it),	 which	may	 be	
exponential	relative	to	the	size	of	the	NFA.	Worst	case,	our	algorithm	may	be	exponential	in	the	size	
of	R.	

There	are	of	course	many	optimizations	one	can	do	in	special	cases,	and	a	lot	of	literature	in	the	field.	
It	is	also	possible	to	avoid	constructing	the	DFA.	

	

	

[end]	

