
INF 4130 Exercise, alpha-beta-cutoff 2017 

w/solutions 

Exercise 1 
Study figures 23.13 and 23.14 (pages 735 and 736 in the textbook) where -1 and +1 is used to indicate win and 
loss, respectively. Look at all nodes and make sure you understand how values for the internal nodes are 
calculated with the min/max-algorithm. Always keep in mind that values indicate the situation for the player 
with the opening move – A. For B smaller values are better. (Note also that in exercise 3 below we negate the 
values on every  level so that we can always maximize!) 
 
Left to the group session. 

Exercise 2 
Study figures 23.16 and 23.17 (pages 738 and 740 in the textbook) and check that your understanding of alpha-
beta-pruning is correct; then solve exercise 23.22 in the text book.  
 
See figure below. Alpha and beta values are not written inside the node, the real node value is indicated insted, 
so that it is easy to see where we get cutoff. A dotted line is drawn between the values that cause the cutoff. 

 

Exercise 3 
Go through the program on page 741 and discuss the solution chosen there, where values are negated on 
every level. Note that there are some misprints in the program. First, in both lines following an “else” the name 
of the called procedure should be “ABNodeValue”. Second, a right parenthesis is missing at the end of the last 
of these lines. 
 
This is left to the group session 



Exercise 4 
If we, in each situation in an alpha-beta-search, are lucky enough to always look at the best move (for the 
player to make the move) first we will get good pruning.  One can even prove that if we go down to depth d, 
with a branching factor of b, the search time with alpha/beta-pruning will be 𝑂(𝑏 ∙ 1 ∙ 𝑏 ∙ 1 ∙ 𝑏 … )⏟            

𝑑 factors

, instead of 

𝑂(𝑏 ∙ 𝑏 ∙ 𝑏 … )⏟        
𝑑 factors

. We shall not attempt to prove this, but instead look at a concrete example. We let d = 3, and b = 

3, and get the tree below. Assume that the best move is always the one drawn to the left in the figure below 
and that we look at the subtrees from left to right for each node. Mark the branches you will have to evaluate 
(and thereby the ones you can avoid). The tree has 39 edges, how many do you avoid looking at? 

 
 
EXTRA question: Assume you are unlucky(?) and always look at the best move last.  Will you then get any 
pruning at all? 
 
Note that what we try to do is always look at the best move for the player with the move. We do, of course, not 
know what move is the best (this would make the analysis too easy!), instead we have to assume we have an 
heuristic that gives us the move, and run the algorithm. What we study is how algorithm behaves if we are 
lucky in our choice of heuristic. 
 
Below is the tree with bold edges where the algorithm must descend. As an example we look at nodes S, T and 
U. We assume that A has the highest value (the highest value of the nodes S, T and U, since we maximize in the 
the root. We further assume that move V is the best possible from situation T. That is, the value returned from 
V to T is so low that we see that the T-value is so small (remember that we minimize in T) that is can not 
compete with the S-value when we maximize in R. And that we therefore need not look at the two remaining 
branches in T. And similarly for S. 

 
Of the 39 edges we need only look at 19, and the number of leaves we look at is 11 out of 27. the number of 
leaves is important as we (at least in chess) most likely have to do a quite heavy analysis of our position to give 
it a score (with a suitable heuristic). 
 
The answer to the extra question is that you can indeed get some pruning (cutoff), if, for instance, the next 
best move comes first and there are at least three children. 



Exercise 5 (not central to the course) 
Assume you are playing the game of NIM, with two piles, and that it is your move, that no pile is empty, and 
that the piles are of different size (number of sticks or pebbles, or whatever). Try to come up with a strategy 
that guarantees victory. 
 
The idea for one such strategy is to make sure that the opponent always finds himself in a situation where both 
piles are equal. In the situation described in the Exercise you can always make sure that this will be the case for 
the opponent in his next move, by taking a suitable number of sticks from the largest pile.  You should go on 
doing this as long as the smallest pile contains at least two sticks.  
 
Then the end of a game: If the opponent makes a move that leaves one stick in one of the piles (and then there 
are at least two in the other pile!), then take all the sticks in the large pile, and you’ll win.  If there are pile is 
empty (and still at least two sticks in the other), then take all sticks in the remaining pile except one, and you’ll 
again win. 

Exercise 6 (From the Exam, 2009) 
We shall look at game trees, and we assume that the root node of the tree in the figure below is representing 
the current situation of a game (that we do not describe further), and that it is player A’s turn to move. The 
other player is B, and A and B alternately make moves. Player A wants to maximize the values of the nodes 
while B wants to minimize them. 
 
Player A shall make considerations for deciding which move to make from the root situation, and the tree in 
the figure below shows all situations it is possible to reach with at most four moves from the current situation. 
A has a heuristic function (that is, a function that for a given situation gives an integer) that he uses to evaluate 
how god the situation is for him. A uses this function for situations where he terminate the search towards 
deeper nodes. For each terminal node in the tree below this function is evaluated and the value appears in the 
nodes. 
  

 

 

6.a 
Using the heuristic values in the terminal nodes, indicate how good the situation is for A in each of the other 
nodes. What is the best value player A can achieve regardless of how well B plays. 

6.b 
We now assume that we are back to the start-situation, no nodes have values. We start the algorithm again, 
and A will then make a depth-first search in the tree from the root node, down to the depth of the tree above. 
In each terminal node A computes the value of the heuristic function (and thereby gets the value given in the 
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Figure 6.1 A game tree with values in the terminal nodes. 

 



corresponding terminal node in the figure above). The search is done from left to right in the figure above. 
Indicate which alpha- and beta-cutoffs you will get during this search. 
 
In the drawing  you should simply write an ‘X’ at the root nodes of the sub trees that will not visit because of 
alpha- or beta-cutoffs. Give a short but explicit explanation for each cutoff (and for this you may suitably give 
names to some of the nodes in the figure). 
 
Answer, exercise 6 

 
 
Answer 6.a  
The best value A can get independent of how well B plays is 6 
 
Answer 6.b 
The reason why we get a cutoff for f is that we in e have already got the value 3, and that the value in c (where 
we minimize) therefore cannot become larger than 3.  And that means that the real (final) value in c will not be 
of interest for computing the value in a (where we maximize) as we already know (from b) that its value will be 
at least 5. Thus, there is no need to look at further subtrees of c.  The value in c then ends up as 3, but that will 
have no effect for the considerations for the levels above. 
 
The reason for the cuttoff at k is that we have already seen that j yields the value 8, and that i (here we 
maximize) therefore never will become less than 8.  But that means that the value of i has no interest for the 
value at d (where we minimize), as we already know from g that this can never be larger than 6.  Thus, we need 
not look at further subtrees of i.  The final value of i will, with this cutoff, end up as 8. 
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