
Universitetet i Oslo
Institutt for Informatikk

PMA

Einar Broch Johnsen, Martin Steffen

INF 4140: Models of Concurrency
Høst 2014 26. 9. 2014Series 4

Topic Monitors

Issued: 26. 9. 2014

Exercise 1 (From the book) Solve: 5.2, 5.3, 5.7, 5.8
Remark: it may be hard to get all the signaling details of 5.7b) right. However, you

should try to describe the waiting conditions for each kind of process.
For 5.8c): Only describe the changes you need to do, any actual programming is not

necessary. Do you need any additional data-structure? If yes, how should this structure
be manipulated?

Exercise 2 (Monitor solution to the Readers/writers problem) This monitor is used
to control reader- and writer access to a shared resource. (fig. 5.5 in Andrews)

monitor RW_Controller {

int nr := 0, nw = 0; ## (nr = 0 OR nw = 0) AND nw <= 1

cond oktoread; # signaled when nw = 0

cond oktowrite; # signaled when nr = 0 and nw = 0

procedure request_read() {

while (nw > 0) wait(oktoread);

nr := nr + 1;

}

procedure release_read() {

nr := nr - 1;

if (nr = 0) signal(oktowrite); # awaken one writer

}

procedure request_write() {

while (nr > 0 || nw > 0) wait(oktowrite);

nw := nw + 1;

}

procedure release_write() {

nw := nw - 1;

signal(oktowrite); # awaken one writer and

signal_all(oktoread); # all readers

}

}

www.uio.no
http://www.ifi.uio.no

Series 4 26. 9. 2014

You may assume that signaling is handled by the signal and continue discipline.

1. In the monitor the primitive signal_all is used. Modify the monitor so that it uses
signal.

2. In the given monitor readers take presence over writers. Modify the monitor such
that writes take presence over readers.

Someone comes up with the following modified versions of request_read and release_write

to solve this problem:

procedure request_read() {

while (nw > 0 || !empty(oktowrite)) wait(oktoread);

nr := nr + 1;

}

procedure release_write() {

nw := nw - 1;

if (!empty(oktowrite) signal(oktowrite);

else signal_all(oktoread);

}

Even though it may seem like a straight forward solution, it does not guarantee
preference to writers. (Try to imagine why before continue reading.)

Consider the situation where exactly one writer process is delayed on oktowrite

when another writer starts execution of release_write. After signal(oktowrite),
the waiting writer is moved back into the entry queue of the monitor. Now, empty(oktowrite)
is true and nw = 0. Thus, a newly arriving reader is given access to the shared re-
source.

Thus, !empty(oktowrite) is not a sufficient condition to guarantee absence of wait-
ing writers. In this and the remaining parts of the exercise, we will therefore follow
the outline from exercise 5.7 and use counters to count the number of delayed pro-
cesses.

3. Modify the monitor so that readers and writers is allowed to access the resource in
turns, if both readers and writers want to access the resource.

4. Modify the monitor such that both readers and writers access the resource in a
first-come-first-served (FCFS) manner. Allow more than one reader to access the
resource as long as the FCFS-principle is satisfied.

Assume given a (FIFO) queue q with the following operations; enqueue(q,X) returns q

with the element X added at the end of the queue. The operation dequeue(q) returns q

with the first element removed and inspect(q) returns the first element of the queue with-
out altering q. This queue will be used to order the processes. The operation empty(q)

returns true only when q is empty, and an empty queue is declared by the statement

queue q := empty

2

Series 4 26. 9. 2014

Exercise 3 (Additional exercise: cigarette smokers) As an extra challenge, you may
try to solve the Cigarette Smokers Problem, Exercise 4.27 in Andrews. This is a surpris-
ingly hard problem.

You might take the following discussion as a starting point. First we model the agent.

Initially, the agent is ready to put ingredients on the table

This semaphore is used to make the agent wait for a smoker to finish

sem go := 1;

These are one if the corresponding ingredience is on the table

sem tobacco := 0, paper := 0, match := 0;

process Agent {

co

while (true) {

P(go); V(tobacco); V(paper);

}

||

while (true) {

P(go); V(tobacco); V(match);

}

||

while (true) {

P(go); V(paper); V(match);

}

co

}

A first attempt to model the smokers might be something like this (the process called
Match is the one needing matches and so on).

process Match { process Tobacco process Paper

while (true) { while (true) { while (true) {

P(tobacco); P(paper); P(tobacco);

P(paper); P(match); P(match);

make cigarette # make cigarette # make cigarette

V(go); V(go); V(go);

} } }

} } }

However, this solution has serve deadlock problems. For instance, if tobacco and
paper is on the table, the process Match should make a cigarette. However the Paper

process may pick up the tobacco before Match, leading to a deadlock.
Notice that the agent is only allowed to communicate with the smokers through the

four given semaphores. It is therefore no solution to add three other semaphores used to
announce which ingredient the agent did not put on the table.

References

[1] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-
Wesley, 2000.

3

