
Universitetet i Oslo
Institutt for Informatikk

PMA

Einar Broch Johnsen, Martin Steffen

INF 4140: Models of Concurrency
Høst 2014 19. 11. 2014Handout 4

Handout 4 PL

Issued: 19. 11. 2014

In this handout, we simply collect all the rules we had during the lecture (in various
parts), for easy reference. They had partly appeared already in earlier handouts.

1 Sequential reasoning

Table 1 covers the rules for the sequential core language. Assign and Skip are rules
without premise (or a premise assumed “true”), i.e., those two rules are thus also called
axioms. There’s one rule per construct of the language plus one rule, which is independent
from the language at hand: that’s the rule Consequence (also known as weakening or
adaptation rule). In the rules as given, only the one-armed condition (without an else-case)
is covered (by rule Cond′). For the two-armed if-then-else, there exists and corresponding
rule Cond, similar to Cond, which is not shown here.

{ P x←e } x := e { P } Assign { P } skip { P } Skip

{ P } S1 { R } { R } S2 { Q }
Seq

{ P } S1;S2 { Q }

{ P ∧B } S { Q } P ∧ ¬B ⇒ Q
Cond′

{ P } if B then S { Q }

{ I ∧B } S { I }
While

{ I } while B do S { I ∧ ¬B }

{ P } S { Q } P ′ ⇒ P Q⇒ Q′
Consequence

{ P ′ } S { Q′ }

Table 1: Rules for the core sequential language

www.uio.no
http://www.ifi.uio.no


Handout 4 19. 11. 2014

2 Concurrency

The rules dealing with the basic concurrect constructs (for shared-variable concurrency)
are shown in Table 2. The treatment of await-statement is straightforward (cf. rule
Await). The reason why it’s rather simple is that its body is executed atomically. So,
since S is protected, programming with with the await-statement is very simple, inside the
conditional critical section, in that one can ignore concurrency. As a consequence, also the
corresponding proof rule works without needing to take care of concurrency. Concurrency
becomes problematic, of course, in the rule of the fork and join construct (using co and
oc), see rule Cooc. The rule itself looks simple and easy to understand. The complexity
likes in the premises where interference freedom needs to be established. In practice, to
find proof-conditions annotating the given program such that interference freedom hold
can be complex. Even being given a proof-ouline which actually is interference-free, es-
tablishing that fact requires a certain amout of combinatorial checks (due to the possible
interleavings).

{ P ∧B } S { Q }
Await

{ P } 〈await(B) S〉 { Q }

{ Pi } Si { Qi } are interference free
Cooc

{ P1 ∧ . . . ∧ Pn } coS1 ‖ . . . ‖ Sn oc { Q1 ∧ . . . ∧Qn }

Table 2: Rules for synchronization and concurrency

3 Monitors

In the case of monitors, we were largely interested in reasoning internally to the monitor,
in particular, specifying the intended behavior of the monitor, at least the safety aspects
of the behavior, in the form of an internal invariant, which we called monitor invariant.
The proof rules/axioms for the monitor synchronization statements are given in Table 3.
Note in particular: rule Wait specifically talks about the said monitor invariant I.

{ I#cv←(#cv+1) } wait(cv) { I } wait

{ ((#cv = 0) ⇒ P ) ∧ ((#cv 6= 0) ⇒ P#cv←(#cv−1)) } signal(cv) { P } Signal

{ P#cv←0 } signal all(cv) { P } SignalAll

Table 3: Rules for monitor constructs

2



Handout 4 19. 11. 2014

4 Asynchronous communication

In the course of the lecture, asynchronous communication and reasoing about it was looked
at in the context of “agent” communcation.1

Finding an argument for that an asynchronously communicating progam does what it’s
indended to do stressed a compositinal approach, i.e., reasoning on a local level concentrat-
ing on one component in isolation on the one hand, and, on the other hand, combinging
the local behavior of the components into a global behavior and its properties. It’s crucial,
when arguing about the global behavior that the internals of the communicating agents
are treated as black boxes i.e., no details of internal variables etc. must enter the picture
in the argument there. That reflects of course the fact that also when programming one
component, the programmer can rely on this component, only, and it’s interactions via
sending and receiving with the environment.

Technically, we introduced local and gloval histories resp. local and global history
variables. The local histories capture the interaction behavior of a component.

The overall structure of a argument for correctness involves 3 ingredients:

1. connecting the local histories to the global history.

2. local reasoning, in the standard manner

3. induction (also locally) to prove that the local history invariant is preserved by
communciation.

The first part, connecting the local and the global levels (via their resp. histories) is
achieve by using projections:

legal(H) ∧i (hAi = H/αAi) (1)

I(H) = legal(H) ∧i IAi(H/αAi) (2)

The second point, the local reasoning is covered by the rules Table 4.

Send
{ Qh←h;A↑B:m } send B : m { Q }

Receive1
{ ∀~x . Qh←h;B↓A:m(~x) } await B : m(~x) { Q }

Receive2
{ ∀~x,X . Qh←h;X↓A:m(~x) } await X ?m(~x) { Q }

{ P1 } S1 { Q } { P2 } S2 { Q }
Nondet

{ P1 ∧ P2 } (S1[ ]S2) { Q }

Table 4: Rules for async. communication (local reasoning)

Finally, to complete the picture, the internal behavior of the component must be glued
to what is specified about the local history (in the form of the local history invariant).
The base case is to establish that the invariant holds 3.2 The other three implications
cover the induction cases.

1There’s of course also asynchronous channel communcation or other forms, only that we did not treat
that using formal reasoning.

2That a property of histories is actually a history invariant requires that the property or predicate is

3



Handout 4 19. 11. 2014

IA(ε) (3)

( h = (h′;A↑B : m(e)) ∧ IA(h′) ∧Q(~x, h) ) ⇒ IA(h) (4)

( h = (h′;B ↓A : m(~y)) ∧ IA(h′) ∧Q(~x, h) ) ⇒ IA(h) (5)

( h = (h′;X ↓A : m(~y)) ∧ IA(h′) ∧Q(~x, h) ) ⇒ IA(h) (6)

Table 5: Induction for the local history invariant

prefix-closed. Therefore, if the base case does not hold, one has formulated an invariant that worse than
wrong: it’s not even an invariant at all.

4


	Sequential reasoning
	Concurrency
	Monitors
	Asynchronous communication

