
Universitetet i Oslo
Institutt for Informatikk

PMA

Einar Broch Johnsen, Martin Ste↵en

INF 4140: Models of Concurrency
Høst 2014 5. Sept. 2014Mandatory assignment 1

Issued: 5. Sept. 2014

Due: 26. Sept. 2014 (18:00)

1 General remarks

How to deliver

• Your solution should be delivered online (https://devilry.ifi.uio.no).

• Program examples should be commented in order to make them understand-
able for the group teacher or lecturer.

Who delivers

We encourage to work together in groups of 2. However, you are not allowed to
solve the oblig with more than one partner. For “technical” reasons (devilry): in a
group of 2 people, both people must upload the solution (which should be identical,
just the same PDF uploaded twice).1 The solution must be marked with name(s)
and email address(es) of the contributing student(s).

If in doubt, you may also read the departmental guidelines for written assign-
ments before you start.

Check in time that devilry works and that your status within devilry (and student
web etc) is ok. Don’t try your INF4240-devilry access as late as the day of the
deadline. In case of doubts, for clarifications, or if having trouble with devilry etc,
ask us in time.

Evaluation

This assignment is graded pass or fail. You must pass the obligs in order to take
the final exam.

1
That facilitates managing acceptance.

www.uio.no
http://www.ifi.uio.no
https://devilry.ifi.uio.no

5. Sept. 2014

“Thread-safe” queue as linked list

Motivation

Programming languages typically come with libraries, i.e., repositories of data struc-
tures and their access routines/methods (think of the Java standard libraries). Typ-
ical simple structures are lists, queues, collections, various forms of trees, but also
window panels etc. Data structure may be thread-safe or not. Threads safety
means that the data structure is implemented in such a way (using appropriate
synchronization internally), that it can be used by a concurrent program providing
the “expected” functionality (for instance FIFO for a queue) and without weired,
sporadic errors. Sometimes libraries provide a thread-safe and a non-thread-safe ver-
sion of the same data structure. When programming concurrently, it’s nessessary to
check the library’s API documentation, wether or not the intended data structure
is thread-safe. If not, of course, the programmer will typically have to take extra
(synchronization) measures to make correct use of the data structure.2

The task described below is not about using an appropriate thread-safe/unsafe
data structure from some library, but about implementing one oneself.

Task

A queue is often represented using a linked list. Assume that two variables, head and
tail , point to the first and last elements of the queue. A null link is represented by
the constant null .

Each element in the queue contains a data field (val) and a link to the next
element of the queue (next). Each element in the queue is thereby represented by
two variables in the program. For convenience, we use dot-notation and write el . val

and el .next for the variables representing the values val and next for the queue element
el . In the initial state, head == tail == null .

The routine find (d) finds the first element of the queue containing the data value d.

1 f i n d (d) {
2 i := head ; # v a r i a b l e i i s l o c a l to

3 # the c u r r e n t method i n s t a n c e

4 whi le (i 6= n u l l and i . v a l 6= d) { i := i . nex t ; }
5 }

The routine insert (new) inserts a new element at the end of the queue. Both
the head and tail pointer must be updated if the queue is empty. (Assume that
new.next == null.)

1 i n s e r t (new) {
2 i f (t a i l = n u l l) { # empty l i s t

3 head := new ;

4 } e l s e {
5 t a i l . nex t := new ;

6 }

2
You may read e.g. http://docs.oracle.com/javase/7/docs/api/java/util/Vector.html

for some typical API information; the example is for illustration only, it’s not connected to the

programming task of the oblig.

2

http://docs.oracle.com/javase/7/docs/api/java/util/Vector.html

5. Sept. 2014

7 t a i l := new

8 }

The routine delfront deletes the first element of the queue (pointed to by head). The
variable tail must be updated if the queue contains only one element.

1 bool d e l l o c k := true

2 d e l f r o n t {
3 i f (head 6= n u l l) { # l i s t not empty

4 i f (head = t a i l) t a i l := n u l l ; # on l y 1 elem . i n l i s t

5 head := head . nex t ;

6 }

Do the following:

1. Identify the V and W sets (see lecture slides) of the shared variables in the
three routines. You may use dot-notation in the variable representation for val

and next. For example: tail .next is in the W set of the routine insert .3

2. Now assume that several processes access the linked list. Consider all six
pairs combining two of three routines given above. Which combinations of
routines can be executed in parallel without interference? Which combinations
of routines must be executed one at a time? Remember to consider the parallel
execution of each routine against itself.

Hint : Remember that two disjoint routines A and B do not interfere with each
other. If A and B are not disjoint, we may use the “At-Most-Once Property”
to decide if A and B interfere. When interpreted on routines, “At-Most-
Once Property” may be formulated as follows: Consider all possible results of
executing A and B sequentially (i.e. A; B and B; A). The routines A and B
interfere with each other if parallel execution of A and B may lead to any new
results not possible from a sequential execution.

3. Add await statements to program the synchronization code in the routines.
Such that non-interference of concurrent executions is enforced. Try to make
your atomic actions as small as possible, and do not delay a routine unneces-
sarily.

Hint : It might be helpful to use more than one locks in order to rule out the
interfering combinations of executions.

3
The slides don’t cover cases like tail .next, we mentioned there only proper variables. tail

is a variable, whereas technically tail .next is not. So, just use the concepts of the lecture to

appropriately cover “variables” in dot notation. After all: like variables, tail .next refers to a

memory address which may or may not be shared.

3

	General remarks

