

UiO : Department of Informatics

University of Oslo

Outline

- Introduction (why and how)
- Integrators and filters
- Gain circuits
- Noise and charge injection

UiO : Department of Informatics
 University of Oslo

Introduction

The arrangement of switches and the capacitor approximates a resistor.

UiO : Department of Informatics

University of Oslo

Introduction

Assuming steady-state, and arbitrarily assume $V_{A}>V_{B}, T$ is one clock cycle.

1. At the beginning of ϕ_{1}, the capacitor voltage, V_{C}, is at V_{B} Volt
2. During ϕ_{1}, the capacitor is charged to V_{A}. The charge transferred to the capacitor during ϕ_{1} is $\Delta Q=C\left(V_{A}-V_{B}\right)$
3. During $\phi_{2}, \Delta Q$ is transferred from the capacitor to B

There is a net charge transfer, ΔQ, from A to B every period. This approximates a resistor, but the charge transfer is discrete.

$$
\bar{I}=C \frac{V_{A}-V_{B}}{T} \rightarrow \overline{R_{e q}}=\frac{T}{C}
$$

UiO : Department of Informatics
 University of Oslo

Introduction

RC accuracy (matching). Large time constants implies large passive components. With SC the time constant is set by capacitor ratio and clock frequency (both precisely controlled).

UiO : Department of Informatics

University of Oslo

Introduction

Resistive loading is undesirable in CMOS. Smallsignal gain: $g_{m} r_{o}$. When loaded with a resistor, r_{l}, the gain is $g_{m}\left(r_{o} \| r_{l}\right)$. I.e. the gain decreases.

UiO : Department of Informatics

University of Oslo

Building blocks

(a)

(c)

(b)

(b)

(d)

UiO : Department of Informatics
 University of Oslo

Discrete integrators

Analyze each clock phase separately

Spring 2013

UiO : Department of Informatics

University of Oslo

Discrete integrators

Analyzing the charge transfer results in

$$
H(z)=-\frac{C_{1}}{C_{2}} \frac{z^{-1}}{1-z^{-1}}=-\frac{C_{1}}{C_{2}} \frac{1}{z-1}
$$

(Describes the output sampled at the end of ϕ_{1})
Delaying integrator (as we are multiplying with z^{-1}) or equivalently from the time domain equation, the output "now" is given by the "previous" output and the "previous" input.

UiO : Department of Informatics

University of Oslo

Discrete integrators

From the z-domain transfer function we find the frequency response.

Assume the input frequency is $\ll T^{-1}$, we have

$$
H\left(e^{j \omega T}\right) \approx H(1+j \omega T)=-\frac{C_{1}}{C_{2}} \frac{1}{j \omega T}
$$

Compare to the continuous time case,

Discrete time time constant
$H(j \omega)=\frac{1}{\mathrm{j} \omega R C}=\frac{1}{\mathrm{j} \omega \tau^{\prime}}$, gives discrete time, $\tau=\frac{C_{1}}{C_{2}} \frac{1}{T}$
Spring 2013

UiO : Department of Informatics

University of Oslo

Discrete integrators

The discrete time equivalent time constant is defined by the capacitor ratio and clock frequency.

- Allows precise time constant definition.
- Allows large time constants without excessively large passive components.

UiO : Department of Informatics

University of Oslo

Integrator parasitic capacitance

$$
H(s)=-\frac{C_{1}}{C_{2}} \frac{1}{z-1} \rightarrow-\frac{C_{1}+C_{p 1}}{C_{2}} \frac{1}{z-1}
$$

UiO : Department of Informatics

University of Oslo

Parasitic insensitive integrators

Critical for performance

Turn off first (bottom plate sampling)
Again, we analyze the charge transfer from one clock phase to the next to find the transfer function.

UiO : Department of Informatics
 University of Oslo

Parasitic insensitive integrators

Almost the same as before (delaying integrator), but the added switches flips the capacitor \rightarrow positive gain.

$$
H(z)=\frac{C_{1}}{C_{2}} \frac{1}{z-1}
$$

UiO : Department of Informatics

University of Oslo

Parasitic insensitive integrators

The parasitic capacitors still affect settling, but not the signal charge transfer.

UiO : Department of Informatics

University of Oslo

Delay free integrator

Same circuit as before, but modified clocking of the switches.

$$
\begin{aligned}
& C_{2} v_{o}(n T)=C_{2} v_{o}\left(n T-\frac{T}{2}\right)-C_{1} v_{i}(n T) \\
&=C_{2} v_{o}(n T-T)-C_{1} v_{i}(n T) \\
& v_{o}[n]=v_{o}[n-1]-\frac{C_{1}}{C_{2}} v_{i}[n] \\
& H(z)=\frac{V_{o}(z)}{V_{i}(z)} \\
&=-\frac{C_{1}}{C_{2}} \frac{1}{1-z^{-1}} \\
&=-\frac{C_{1}}{C_{2}} \frac{z}{z-1}
\end{aligned}
$$

UiO : Department of Informatics

University of Oslo

Signal flow graph analysis

- Now we have the fundamental building blocks (discrete time integrators), to realize filters.
- We need a more convenient tool to analyze large systems.
- Signal flow graph (SFG) analysis allows us to graphically analyze SC systems.

UiO : Department of Informatics

University of Oslo

Signal flow graph analysis

$H_{1}(z)=\frac{V_{o}(z)}{V_{1}(z)}=-\frac{C_{1}}{C_{A}}$ (inverting gain stage)
$H_{2}(z)$ is the noninverting delaying integrator
$H_{3}(z)$ is the inverting delay-free integrator

(a)

UiO : Department of Informatics

University of Oslo

SC filters

A simple design strategy:

- Start with a continuous time prototype
- Replace resistors with SC resistor equivalents

The resulting circuit is similar for input frequencies much lower than the sampling frequency

- Use SFG to determine the z-domain transfer function
Accurate description of the transfer function

UiO : Department of Informatics
 University of Oslo

First order filters

Filter design example.
Start with the continuous time circuit. In this case:

UiO : Department of Informatics

University of Oslo

First order filters

Replace the resistors with SC elements

(a)

(b)

UiO : Department of Informatics
 University of Oslo

First order filters

- Use Fig. 14.14 to find the SFG
- From this we find the z-domain transfer function
- $H(z)=-\frac{1}{C_{A}} \frac{C_{2}+C_{1}\left(1-z^{-1}\right)}{1+\frac{C_{3}}{C_{A}}-z^{-1}}$
- Find pole and zero (stability)
- Frequency response, $z=e^{j \omega T} \approx 1+j \omega T$

UiO : Department of Informatics

University of Oslo

Switch sharing

Some switches are redundant, we use this to simplify the circuit:

UiO : Department of Informatics

University of Oslo

Biquad filters

Ratio of two quadratic functions. In continuous time

$$
H(s)=-\frac{k_{2} s^{2}+k_{1} s+k_{0}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

UiO : Department of Informatics

University of Oslo

Low-Q biquad

UiO : Department of Informatics

University of Oslo

Low-Q biquad

$$
H(z)=-\frac{\left(K_{2}+K_{3}\right) z^{2}+\left(K_{1} K_{5}-K_{2}-2 K_{3}\right) z+K_{3}}{\left(1+K_{6}\right) z^{2}+\left(K_{4} K_{5}-K_{6}-2\right) z+1}
$$

UiO : Department of Informatics

University of Oslo

Low-Q biquad

- A design strategy for determining capacitor sizing is outlined in the book
- High-Q transfer functions result in large capacitor spread (ratio of the smallest and largest capacitor)
- As before, we find the frequency response as $H\left(e^{j \omega T}\right)$

UiO : Department of Informatics
 University of Oslo

High-Q biquad

Spring 2013

UiO : Department of Informatics

University of Oslo

High-Q biquad

$$
H(z)=-\frac{K_{3} z^{2}+\left(K_{1} K_{5}+K_{2} K_{5}-2 K_{3}\right) z+K_{3}-K_{2} K_{5}}{z^{2}+\left(K_{4} K_{5}+K_{5} K_{6}-2\right) z+\left(1-K_{5} K_{6}\right)}
$$

This transfer function turns out to be better suited for realizing high-Q transfer functions (less spread).

UiO : Department of Informatics

University of Oslo

Gain

- Resettable gain circuit
- Samples offset voltage during reset (reduces flicker noise)

UiO : Department of Informatics

University of Oslo

Gain

(b)

Amplifier slew-rate requirement is high.

UiO : Department of Informatics
 University of Oslo

Capacitive-reset gain

Include a capacitor to hold the output during the reset phase. Avoid excessive slewing. Configurable positive or negative gain.

Spring 2013

UiO : Department of Informatics

University of Oslo

Noise

Noise from the switch is sampled on the capacitor with the signal.
Sampling the $\frac{k T}{C}$ noise is like sampling any other signal. The total noise power remains. Broadband noise alias back to the signal band.

UiO : Department of Informatics
 University of Oslo

Noise

In the delaying parasitic insensitive case, noise is sampled independently in ϕ_{1} and ϕ_{2}, doubling the noise: $\frac{2 k T}{C}$

UiO : Department of Informatics

University of Oslo

Correlated double sampling (CDS)

- We have already seen how opamp offset voltage can be sampled and canceled.
- Generally, this technique is known as correlated double sampling (CDS)
- Flicker noise is low frequency (assumed to be occurring at lower frequencies than the sampling frequency). Can model it as a randomly varying offset voltage \rightarrow also canceled
- Can be applied to different sampled systems

UiO : Department of Informatics

University of Oslo

Fully differential circuits

Real circuits are almost always fully differential.
Coupled noise, power supply noise, substrate noise will mostly affect the common mode, while our signal is in the differential mode. Also, cancels even order harmonics.

UiO : Department of Informatics

University of Oslo

Charge injection

We discussed performance limitation of the switches in the context of sample and hold circuits. The same applies for SC. As we have seen, charge injection limits linearity.
\rightarrow arrange the switching and clocking to minimize the signal dependent charge injection.

UiO : Department of Informatics

University of Oslo

Bootstrapped switch

Generate a clock voltage such that $V_{G S}$ is constant $\left(V_{i n}+V_{d d}\right)$. Better $R_{o n}$ and alleviates charge injection problem. Increased complexity, and reliability can be problematic.

UiO : Department of Informatics

University of Oslo

SC amplifier design

Unanswered questions (for now). How do we design amplifiers suitable for SC circuits?

- DC gain (static error)
- GBW (dynamic error)
- PM (stability)
- Slewing requirements
- $C_{i n}$ (capacitive divider)
- ...

UiO : Department of Informatics

University of Oslo

Further reading

Sansen, Analog Design Essentials, Springer, 2006, Ch. 17

