

UP : Department of Informatics
University of Oslo
Stability
We modeled the quantizer as a linear addition, but
the single bit quantizer is highly non-linear.
Implications for stability. The quantizer can be
overloaded—meaning its input is outside the
allowed/expected range, giving quantization errors
beyond
$$\pm \frac{\Lambda}{2}$$
. Stability is not well understood. A
practical choice is to ensure
 $|H_N(e^{j\omega})| \leq 1.5$

UiO : Department of Informatics University of Oslo Multi-stage noise shaping (MASH) This requirement is satisfied if we choose $H_1(z) = H_{S2}(z)$ and $H_2(z) = H_{N1}(z)$ Easy enough, but we must take into account that $H_1(z)$ and $H_2(z)$ are in digital and we must match them to $H_{S2}(z)$ and $H_{N1}(z)$ which are analog functions. Imperfections in the analog circuitry (offset, gain, etc.) will deteriorate the noise suppression.

