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Abstract
The sorting network described by Ajtai, Komlés and Szemerédi was the first to achieve = depth of
O(lecg n). The networks introducad here are simplifications and improvements based szongiv con
their work. While the constants obuined for the depth bound still prevent the constructic: being of

praczcal value, the sucture of the presentation offers a convenient basis for further deve zoment.

1. Introduction

We consider networks whick are constructed using components of a single wge. the
comparator. A comparator has two inputs and vields as its two outputs the input e.zments o
soried order. The N inputs are cresented on N wires and at each successive level of &2 nerwork
atmost N/2 disjoint pairs of wires are put into comparators. After each level the N ~izes carry
the original elements in some zermuted order and the network is a sorting network ir the

elements are always in sorted orcer after the final level of comparators. The depth of a nznwork i3

Jjust the number of levels.
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One very simple regular sorting network, "odd-even sort”, has depth N for N>2. A1 eglegant
recussive nerwork due to Batcher [3] requires only about (log N)2/2 depth. A userul source Zcr
background and references in this area is [6]. The familiar Q(N log N)-comparisons lower bound
for sorting immediately gives an Q(log N) lower bound for the depth of sordng zetworks.
Following the appearance of [3] in 1968, a longstanding open problem has been to close :ais depth
complexity gap. This was finally achieved in 1983 by Ajtai, Komlés and Szemerédi ([1], (2]) with
a sorang network of O(log N) decth. Their construction and proof are of some intricacy ind since
their main concern was just to provide an existence proof for such networks the numericzi constant

in the depth bound is enormous. In this paper [ will present a simplificaton of their corszucdon




which allows a more accessible proof. The constant obtained in our proof is still so large that
Batcher's network has less depth for all practical sizes of networks, but we have some hope that

further refinements may yield a substantally improved constant.

The sorting network described here was originally presented at the Complexity Theory meeting in
Oberwolfach in October 1983 and again at Theory Day at Columtia University in March 1984, 1
would like to thank Pippenger, Rackoff and Skyum for valuatie discussions during visits to
Aarhus University and IBM San Jose in 1983, and Cole for useZul comments on a preliminary
draught of this paper. I also acknowledge the patient urging of man colleagues without whor s
work would have remained in oral tradition, and the support c¢? the Science and Engineering

Research Council with a Senior Fellowship from 1985.

2. Overview of network

Consicar a binary tree with 'bags’ at each node. Inidally the ser of N elements to be soried Is
contaired in the single bag at the root Suppose we were to partiticz the elements from the root t2g
into a left and a right half, and we wansferred these to the left and fight daughter bags respectively.
(We shall use the terminology of left and right rather than small 22d large in the sorted orcer ot
elements to accord with a geometrical picture of a binary tree with tie root at the top and brancnes
going cown to left and right.) If we were to continue in the same w2y then after log N stages e
elements would have been sorted. Unfortunately the task of partcening a setof n elements into
left and right halves requires Q(log n) levels of comparators. The idea used by Ajtai, Komlds and
Szemergdi ([1], [2]) is to take an approximate partiion of elements. ‘which can be achieved in oniv
2 consiant number of comparator levels, but to introduce some eror-recovery sucture into te
sorting scheme. In our most basic scheme this is done by partitoning the bag of elements at each
node into four parts: the main left and right 'halves/, which are seat cown to the daughter bags, and
in addition two small fragments from the extreme ends of the partitioning process, which are
intended to include most of the elements that were wrongly routed from higher in the wee and

which 2re now returned to the pareat bag above. Our nerwork orerates almost uniformily in -his

manner Srom start to finish. At any tme the sizes of the bags at any one level in the ee are equal

|89




and this size increases in a geometrical progression with the depth of this level below the root. The
upper smaller bags of the tree are concemed with recycling that small fraction of the elements which
may have been misclassified in some partitioning process. As time progresses the size of each bag
is reduced, again in a geometric progression, thus 'squeezing' the elements down the tree towards
their final locations at the leaves. The correctness of the network is demonstrated by proving an
invariant which bounds the proportion, within each bag, of elements with any particular degre= o
displgc;ement from their 'proper’ posidons. The notion of 'strangeness' used in this invariant is 2
simplification of that introduced in [1]. During the account below of the network anc the
correctness proof, various parameters are required. At each point we set out the inequalities which
the paramezers have to satisfy and produce an examiple of suitable parameters in ordcer to animate the

description.

We initially describe the sizes of various sets of elements as if thev were real numbers. Uldmazei
we will show how appropriate integer values can be chosen so that the required inequalides st

hold.

3. Definitions and building blocks
In [1] the nouon of an €-halver is inroduced. Forany € >0, an e-halver for m elements is 2
comparator network with m inputs, and with outputs partitioned into a left and a right block each or
size m/2. The e-halver has the property that, for any set of inputs and any k < m/2, the number
of elements from the k leftmost in the ordering which are output in the right block, and from the &
rightrnost which are output in the left block, are each less than ek. An e-halver can be constructec
in constant depth (depending on €), for example by using expander graphs. This is described in
(1], but where those authors go on to build "e-nearsorts”, we shall use the more limited component
which is described immediately. A (&, €, £g)-separator (on m elements) returns a partition
of its m input values into four parts FL, CL, CR, FR, of sizes Am/2, (1-A)m/2, (1-A)m/2 and
Am/2 respecdvely. The set FL (for "far-left") has the property that for any k, k <Amy/2, the
number or elements from the set of k lefumost input values which are not in FL is less than &k.

The same holds for FR ("far right") with respect to the rightmost elements. Also, for any k. x




m/2, the number of elements from the set of k leftmost input vziues which are not in FL or CL
("centre-left") is less than €5X, and similarly for elements from == right half of the ordering which
end up notin FR or CR. It is easy to build some (A, €, gp)-sezzrator from a constant number of
€p-halvers. In partcular if we use an €p-halver on the m inpuz. then apply an gg-halver 1o each
of the resulting output sets of size m/2, then two gp-halvers 1o 22ch extreme set of size m/<4 and
SO on through p levels, the resulting network yieldsa (2P*1, pes, gg)-separator. The p leveis of
falvers produce a sequence of 2p blocks. The exteme blocks zre taken for FL and FR, while

the left and right halves of the remaining sequence are cc—pined to form CL anc CR
respectively. To verify the value of € we note that a properZon gy of some set of ExTme

clements may escape 1o the "wTong' ourput black at each of the T aversof gy-halvers.
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Fig. 1. Constucdon ofa (1/8, ¢, Ep)-separator from a seguence of €g-halvers

(1) For sample parameters we will take: p=4A=1/8,e9=1/72.and e = 1/18.
At various places in our constuction we want to sort sets of a sm2il constant size. It is convenient
t0 use there the sorting nerwork due 10 Batcher (3], the dermz of which for m  elemenss is

. 1 o] /;-)
acproximately (log, m)Z/2.




4. The network

The sorting network is structured about a complete binary tree which we shall imagine with the root
at the top and leaves below. Associated with each node of the treee is a bag which contains a
number of the elements being sorted. The capacity of a bag is the maximum number of elements
which can be stored in that bag. For most of the algorithm each bag is either empty or filled 10 its
capacity. With the root considered to be atlevel O in the tree, the capacity of each bag atlevel d
is r.Ad for sonﬁe constant A, and some value of r decreasing with time.

(i1) For example: A =3.

Fig. 2. Tree stucture of bags.

Special situations occur at the topmost and lowest nonempty levels of the tree so we start with a
description of the sordng process at intermediate levels. The algorithm works in stages beginning
atstage 1. Atodd stages all the bags at odd leveis are empty and the bags at (some) even levels are
full, while the opposite holds at even stages. At each stage the elements in any full bag are
parutoned by a separator, the far-left and far-right parts are sent up to the parent bag and the cenme-

left and centre-right parts are transferred down to the left and right daughter bags respectively.
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Fig. 3. Reduction of bag capacides after each stage.

Consider a bag, empty with capacity b at the beginning of some stage which is fiiled 10 its pew
capacity vb at the end of the stage. Thus:

Vb = 2AbA + (1-0)b/(2A).

—a1

We require v < 1 so that the capacities diminish at each stage and elements are squeez=¢ down -
tree in the course of the algorithm, i.e.

(1) Vo= 2RA + (1-0)/(2A) < 1

(1i1) With our sample parameters: v = 43/43.

The capacity of each bag atlevel d after stage t will be ¢vtAd for some constant -,

To each bag there corresponds naturally an interval within the sorted order of the elements. Tk-
root bag corresponds to the whole ordered set, its left and right daughter bags correspord to the le::
and right halves of the ordering, and, for example, the bag reached by tiking the path “RL dow-
from the root corresponds to the third eighth from the left. To work out the strangeness of som:
clementin a pam'cixlar bag we count the number of Steps up the res from that bag towards the roo:
which are needed to arrive at a bag within whose natural interval the element lies. Thus:

(1) all elements in the root bag have strangeness zero;

(ii) the strangeness of any element if nonzero is decreased by one if the element ‘s sent up to

the parent bag; and




(iii) when any element is sent down to = daughter bag its strangeness increases by one,
except only when its strangeness is zero and it is sent down to the 'correct’ daughter i

which case its srangeness remains zero.

For any bag B and integer j> 0, we define $i(B) at some time to be the number of elements

currently in B with strangengss j or more, excressed as a proportion of the capacity of B. The
invariant that we maintain in order to assure the correctness of our construction is that:

@) S;(B) < p-8-1 forall 3 and forall j= 1.

(iv)  Forexample, i =1/36, § = 1/40.

In [1] the authors’ concern was solely with 21 existence proof and thev use correspondin:

parameters | = 10-74 §=10%.

At each stage the elements in each bag are partricaed bya (% & gg)-separater. the parts FL a0
FR are sentup to its parent; CL and CR are szt down 10 its left and right daughter respectivel,
Assuming that (2) held at the previous stage we can give an upper bound on the number -7
elements of strangeness j or more in some tzz B at the following stage. Suppose the new

Ay

capacity of B 1o be Vb and the old capaciries ¢ B's parent bag and daughter bags to be b/A and
bA respectively. For j>1 the elements of stra=geness j or more that find their way into 2 o2
either elements of sorangeness j+1 or more from “he daughter bags, or elements of strangeness -
or more which are sent down the wrong way by e parent bag. If we ensure that the FL and FR
parts of the separator are each sufficiently lz-gze to accommodate any elements of positive
srangeness then only at most a propordon € of Zese are sent cown. We therefore require that:
3) HoSN2,
Then the new strangeness of B, S'j(B), satisfies:

Sy(B)vb < 2bApd) + e3/A)ud-2  for j>li.
To ensure that (2) holds for the new stage we wiii choose parameters satsfying:
4 2A282 + & < VAS.
v) With A=3, 6=1/40, e=1/13, v=43/48, we zave 9/800 -1/18 < 43/640. and (<) hoids.

~)




Proving the required bound for S$';(B) is more complicated. The first term, 2bA 1S, appears just

as before, representing the import of elements of swangeress two or more from B's daughters.
Now however, some elements are misdirected downwards o B by B's parent not only because
of mistakes by the separator but also because the parent bag may contain too many of the elements
appropriate to B's sister, C say. Let this set of elements of sxangeness zero with respect to C be
denoted by V. The 'natural’ location for V would be the whole contents of the subtree rooted at
C together with one half of the contents of B's parent, one ¢ighth of her greatgrandparent, and so
on, assuming for the present an infinite chain of ancestors. T=z sizes of the bags will be such that
ad £

V' would fit exactly in this spacs. In reality some elements of V mav have been displaced from

this area and so might be occupving more than half of B's cotent's bag.
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Fig.4. Sources of errors for bouncing S1(B)




The bag of a daughter of C may containup to S»bA elements from outside V. A bagz two levels
further down the tree may contain S;bA3 such elements, and so on. The total number of elements
thus intruding into V's area in levels lower than B is at most

2S7bA + 8S4bA3 + 32S6bAS + ... < 21u8bA/(1 — 452A2).
The area above B's parent appropriate to V may in fact contain no elements of V. The total Spdcs

here amounts'to
b/(8A3) +b/(32A5) + ... = b/(8A3 - 2A).

In addition B's parent may contain up to S1b/A (< ub/A) strangers.

Thus, even if the inidal halving of B's parent were done perfecdy, a surplus of elements of V' and
other strangers with respect to B may spiil across into B. The surplus 1s bounded bv :the sum of
the three terms identified immediately above. Spliting error adds a further term of begf(2A) since
up to that number of elements may be misplaced in the inidal split. Thus we have:

S'1(B)V < 2U8A + 2u8A/(1 — 48%A2) + 1/(8A3 - 24) + WA + e/(2A0
Since we require S'[(B) < L, our parameters must satsfy:
(5) 2u8A2 + 2u8A%/(1 ~ 452A2) + 1/(SA2 — )+ +ey2 £ VUA
(vi) The choice €y =1/72 suffices since 1/80 + 5/391 +1/70 + 1/36 + 1/144 < 43/375,
5. Boundary situations
During the course of the algorithm the elements migrate down through the wee. We will arrangs
that there is at most one partially filled level. Atove this, the levels are alternately emprtv and full as
already described; below, all levels are empty. To this end we require that at this partial leve!
each separator should send up to its parent bag the normal number of elements if it has sufficiendy
many. After this requirement is met, any remaining elements can be sent down to the daughter
bags in equal numbers. Since the strangeness bounds are expressed as a proportion of bag capacity
rather than as a proportion of the elements present, it is easy to satisfy these bounds at the partal
level. To ensure that no more than the permirted number of elements with a certain strangeness are
sent down. it suffices to adapt the usual separators in the following manner. After the inidal spiit

into halves we inmoduce two sets of 'virmual elements' 0 make up the full number of =lements in




each half. The virtual elements added to the left half are always '‘more right' in comparisons with
existing elements of the left half, whereas the virtual elements of the right half are 'more left' than
the real elements of that half. The modified separator is obtained by deletdng from the usual
separator all of those comparisons involving virtual elements and routing the real elements
appropriately. If this results in any virtual elements reaching FL or FR then they should now be

replaced by arbitrary real elements from CL or CR respectively.

We must check that the srangeness invariants are satisfied around the partial level. For Sy, the

initial split will leave no greater number of the elements than usual in the 'wrong' half, though the
proportion of these elements may be greater. For S, j>1,the introducdon of the virtual elements

—

‘nto each half serves only to assist the swange slements into parts FL and F

R.oand the nurrer Of
=K, A04 S8 DUrDSEr i

wange elements sent down will not be excessive.

(%}

The other abnormal boundary level is at the root of the Tee. Here we would like the root node w©
“ehave as if it were an ordinary interior node of the wee. We therefore keep above it a subset of
:he elements, the cold storage, with which the root exchanges elements as with a parent. No
comparisons are rzguired within the cold storage, and the szangeness invariants are satisiied at the
zoot since bv derinition all elements have stangeness zero there. The arguments in Secuon -
‘nvolving an infinite chain of ancestors carry through if we regard the cold storage as simulatng
half the root's parent, one quarter of her grandparent, and so on. The capacity of the cold storage
is therefore to be:

r/(2A) + 1/(8A3) = ... = 2Ar/(4AT = 1) at even stages,
and: /(LAY + /(16AH + .. =7/dAZ=1) at odd stages,
where r is the capacity at the root. To begin the algonithm N(1-1/(4A)) of the input elements
are placed in the root bag and the remaining N/(4A2) elements are considered to be the cold

siorage.

6. Final stages
Stages proceed as described. with each bag getting smailer and the elements migrating down the

Tes. untl the size of the root bag gets sufficiently smail for us 1o split the tree in two. AL an odd
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stage, when all the odd levels are empty, the number of elements in a bag at level 2j which arz -
the wrong half of the tree is bounded above by:
rAZS,; < rA%ud2-l < rApd
provided we have:
©6) Ad £ 1.
Therefore this number of elements is less than one, i.e. zero, by the time 1 has been reducec -2
1/(A2u8).
(vii) We have A3 = 3/40 < 1 and the critical value of r = 1/(A%ud) = 160.

At such a time then, there are no elements in the wrong half of the Tee, so we exac:ly separate =2
set of all elements in the rcot bag and the cold storage into a left anc 2 right half. From these halw o
the roct and cold storage for each subtree can be immediatsly Zormed. To achieve the ex::-

separation for a set of bounded size a Barcher sorting network [3) mav be used. From this stacs -~

a new root-splitting step will be required at regular bounded inarvals, resulting in a rapiz..

growing forest of independent subwess. Finally, when these subtrezs reach a conveniently smz.”

bounded size, each can be exacty sorted to give the final result.

To estimate the total number of stages required by the algorithm. we note that the bags at lev:
log N are inidally of capacity ©(N-Al0gN) where our logarithms are to base 2. At the last 522z
of the algorithm these bags are of capacity ©(1), since they are within a bounded number of levz.:
of bags of bounded capacity. Thus the number, &, of stages of the aicorithm satisfies:

N-Alog Noyx = A(1),
12, kK = log;N-log(CA)/(-log v) + O(1).

(vill) We have: log(2A)/(-log V) = (log 6) / log (48/43) < 17.

7. Integer rounding

In previous sections we have specified the 'ideal' sizes of various sess of elements as real numbe=
and it remains to show how to pick integer sizes satisfying ail the constraints. Provided that =2
sizes chosen are all very close to the ideal sizes and that the capacides of all the bags are sutficien.~

-2

large, the inequalities governing our constants will stll be satistied tv our proposed values. Sizzz
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the swangeness bounds are expressed as a proportion of the capaciry of a bag he possibly small
actual sizes at the partial level cause no special difficulty. The smallest capacizzs in our algorithm
arise at the root of a tree when we are about to split the tree. (For example, in Section 6 the critical
root capacity was given as 160 for our parameters.) In case the correspondizg value for some
choicz of paramaters is too small to absorb the effects of rounding, the root-split=ng may be done at
an earlier stage. Referring to Section 6, we see that no elements at or below lzvel 2j are in the
wrong half of the tree provided that:
1/(AZu82-1y,

At an odd stage the number of ciements above level 2j is about r(2A)Z/(422—1). If we use
Batczer's method to sort exactly this set of elements (instead of just the root tag and cold siorage)
then e wee can be properly spiit. For all of the networks we Zeseribe later, 1= suffices.

(ix) With A=3, u=1/36, 3=1/40. ;=2, we could maintain r > 28,000 Dy sorung sets of size atout

one —uiilion.

It is convenient and efficient for the design of separators that the actual number cf elements in each
bag be even. Note that this can be achieved even when N is odd because =7 our use or cold
storage. We provide a simple recipe for the integer sizes of the bags which wil ensure that these
cannct sway tar from their ideal sizes. If the ideal total content of some subree is & then the
actual content is to be 2 [ w2, Suppose then that for some node the ideal conizat of its subtres
@, while the ideal contents of its daughter subtress are B. If the ideal and integer sizes of the bag at
that ncde are b and Z(b) respecively then:
b=oa—28, Zh)= 2[ew2]-2[pn27l, so b=+ < Zib) < b1

Since only the partal level of bags can ever become very small there is no difs Lty In maintaining
the reladonship. Thus Z{b) is even and the close agreement between b and Z(b) satisfies our

requirements.

We shall see that our ideal (A'. e, €y)-separator, with say A' = 2-P+1 can e refined to take

account of integer sizes and to ailow the size of FL and FR :0 be arbitrar. within the range

[A'b/2. b/2], while maintaining the same error bounds. Thus we need only zasure that A’ is




sufficiently small that our algorithm with parameter A, say, never requires the size of FL, or RL
to be less than A'Z(b)/2. Suprose that some full bag has ideal capacity b and the ideal content for
the corresponding subtree is . Our recipe specifies:

IFLl = IFRI = [o2]-[(@-Ab)y27 > [e2] - w2 + Ab/2 -1,
whereas:
AZb)2 < N(lo2l- w2 + b2),

and so it suffices to have:

A=A +2/b.
In the interests of clarity we ignored this consequence of rounding in our earlier description and
identified A and X', but now values for A and Vv must te increased appropriately. The effect on
our final constant decend on the minimum size ¢l 5.
(x) With b2160and X' =1/8, we need » = 0.1373, 2nd when Vv increases correscondingly
the number of stages more than miples. However with b 2 23,000 the increase in the number oF

stages is less than 0.2%.

The principal motivation for making the sizes of Sags even numbers is to simplify the a2nalvsis of
halvers and to permit the relzdvely clean bound of the theorem in the nex: section. This is of
significance only for the initzal (symmetrical) halver step in our separators. The later haiving steps
are not applied to sets of even size but these can te dealt with by inroducing a 'virtual' element as

described below. Were this done in the first step also, it would degrade the performance

unacceptably for smalil values or k.

Consider a halver which is on e left side of the secarator saucture and whose functon therefors is
to ensure, for some € and for some range of values of k, that fewer than ek elements from the
extreme left k of its input elements are output in the right (i.e. wrong) half. If the numter of input
elementsis 2n — 1 we introduce a new 'virtual' element which is considered to be to the right of
all the real elements. After the applicadon of a standard' halver for 2n elements, the virtual
element will have been ourtpur to the right and is discarded. The specificadons for the standard

1

nalver will have the same vaive of € and only have to hoid for the same range of values for X

despite the number or inputs being greater.




Finally we note that whenever the size of FL, and FR has 0 be increased to achieve the specified

bag sizes we can transfer elements arbirrarily from CL o FL and from CR to FR without

worsening the error bounds.

8. Separators and constants

We prepare for a more economical construction of separaicss by generalising the notion of halver
which we defined in Section 3. For any e>0and o, 0 << 1,an (g, a)-halver for m=2g
elements is czfined in the same way as an g-halver except nat the key property is only reguired to
hold for sets of size k with k < ¢n instezd of for all kK <:. We shall see that this less saingent

requirement allows a considerable economy in depth when « << |,

Theorem Fer O<e<lp, O<a<t and n >0, thersexisisan ¢ g a)-halver for. 2n elemen:s
with depth C{c,e) where:

Cle,e) =11+ (h(sa} + 21y ) 7 ez Ln({l-a;c'.))*f,
and:

hx)= -xlnx - (1-x) In (i-x).
The proof or :his theorem is given in the Appendix. An esszanial feamre of the above result is thar
an explicit Cepth is given which holds for ail values of n. Previouslv published results such as [
give just asvmptotic values as n tends to inflnity. Since oi halvers are to work synchronousiv at
all levels of the tree and since the root levei is small for a simificant proportion of the sages, this
swonger result is necessary. We have, however, taken a stizzdy larger value for C than that given
by the asymp:otic bounds in order o simplify our anaivsis. Qur proof does not vield an explicit

halver network: all currently kxnown explicit constructons require a much greater cepth. Sece

references [3], [5], and [7] for further information and reca=: work.

An easy analysis reveals that, when & — 0:
C{l,e) — -2lne/e,
while for fixed o, 0 <t < 1:

Cla, &) = -n(a)/(ect ln o).
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The total depth of the network we have described is approximately

log,N-p-C(1, €g)-log(2A)/(-log V)
when we constructa (2°P*1, peg, €g)-separator using p levels of €p-halvers.
(xi) Our sample parameters p=4, A'=1/8, g5=1/72, A=3, u=1/36 and 8=1/40 yield a value that is
just under 50,000 log,N.

It is possible to do a lirtle better just by varying the parameters. For example we have found that

the values p=4, A'=1/8. £5=3/223, A=2.7, u=1/16 and 8=1/34 can reduce the constant below
30,000. However we shall show next how this constant may be more substantially improved after

a closer analysis of separators.

L

The error estimate € Is the sum of eror conmibutions from each of the p leveis. Suppose w
allow an errorof € atlevel i for i=1, ., p, where €= € T €+ ...+ &y Inthe coarse analvily

we used until now we zcopted the pessimistic setting of o = 1. and have used a halver o7 Wt

uQ

C(1, g;) atlevel i. Referring to figure 1 again. we see that at level i the rato of the number o
smangers to the size or 2 half is at worst (i : 1/21) so that we couid actually consruct a separaios
with total depth

CQ2u, g = Cly, €1) + ... + C(2Py, sp).

Note that our constrain:s ensure that 2Py < 1.

For the €j-bound that 2lso has to be assured by the first-level halver. we can again IMprove on i
naive estimate of a =1. Referring back 10 the derivation of the bound on S} in Sectdon 4. we sez
that the number of elements of V in the bag of B's pareat is at most

b(1 +n}/(2A) where = 4u8A2/(1 - 482A2) = 1/(4A2~ 1)

[n addition there may te up to S;b/A swangers. Since all but a proportion € of ‘right’ sangers
would get sent up the ree with FR, the worst case in the estimaton of S’y is when there are
bu/A swangers and thev are all to the 'left’. (This case can arise only when B is the right (lert)
daughter of a right (left respectively) danghter. In the situation shown in figure 4 any elements

with swangeness exac:!y one for B's parent must be 'left’ swangers. Taking account of :his

asymmey could improve the bound slightly but would complicate our analysis.) At worst ihe
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number of good elements (i.e. those appropriate to B) in this bag is only b(1 ~1 - 2u)/(2A), and
so to limit to €p/(2A) the further influx of strangers to B due to good elements being sent the
wrong way the first level halver only requires depth C(1 -1 —2u, gy) instead of our former
estimate of C(1, €g). The total depth needed for a separator is now reduced to

max{ C, 1), C(1 =1 = 2u, €0) } + C(4LL, &) + ... + C(2Py, &p)-

With this more refined constructon the parameters
p=4, X'=1/8, A=2.7, u=1/20, 8=1/40, g4=1/59, £,=1/134, £,=1/85, £3=1/83, e4=1/62

vield a constant below 6500. This comes from a network with about 9.5 log,N siages and
separators of depth 678. The best constant we Lave found is under 6100 and achiewed using

parameters given approximately by:

7,and f

tor i=u.05, 1E =62, 199, 110, 109, 105, a0,

st
th

/
!
‘

p=3, A=1.75, 1=1/30, 3=

to vieid a network with abour 6.15 log,N stages each of Ceptn less than a thousand.

9. Ideas for improvements

When we classify the contents of a bag we must expect a small proportion of elements Tom the
middle range of values to be misclassified berwesn CL and CR so that they are sent cown to the
wrong daughter bag and acquire strangeness 1. A more cautious classification would croduce

1

borderline class which was to be retained in the same Cag at the next stage. The emptiness it
alternate levels in the construction described above was a convenient simplificadon but is not an
essential feature. To incorporate the modifications suggested in this secton all the bags above 2

certain level in the wee are maintained full 0 capaci:v. Consequent changes ars reguired at the

upper and lower extreme levels.

Consider the exweme left elements which may be found in a bag at a lefr daughter node in the ee.
It will be clear that if these elements need to be moved left and have nonzero strangeness then thev
must have strangeness at least two and could usefuilv be sent up mwo levels at once. Similar

reasoning holds for exweme right elements in a right daughter bag.

For the refinements suggested above there is a trade-ofs between. on the cone hand. limitdng the

amount of misdirection and ailowing the more rapid return of strangers, and, on the other. speeding
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the progress of correctly sorted elements down the tree towards the leaves. The constraints on the

parameters are easily handled but the technolocv of producing efficient classifiers of the more

10. Conclusion

We have tried to describe these depth ©(log n) sorting networks as cleanly as possible. The
constraints on the parameters have been exwmacied as a simple set of inecualides. While the
numerical bounds we have proved suggest that the present construction is sc!l far from efficient.
we hope that the framework presented will excourage further progress :owards a practical
algorithm.

Cpen Prctlem Develop an error analysis which measures more elogelv e Termor=anes nf &l
kind of sorting network.

Cenlecrmre The depth of network required for 2 correctness of cur algenmiim s overcsumotes

hugely by our analysis.

References

<

[1] M. Ajui, J. Komlds and E. Szemerddi, "An O(n log n) sorting network." Proc. 15t Ann.
ACM Symp. on Theory of Compuring (1983) 1-9.

(2] M. Ajrai, J. Komlds and E. Szemerédi, "Serting in C iog N parailel steps.” Compinciorica
3(1983) 1-19. ‘

(3] K. Barcher, "Sorting networks and their applications,” AFIPS Spring Joinr Compurer
Conjerence 32(1968) 307-314.

[4] F. Chung, "On concentrators, superconcentrators, generalizers, and nonblocking networks.”
The Bell Svstem Technical Journal $8.8(1978) 1763-1777.

(3] O. Gabber and Z. Galil, "Explicit consiuctons of linear-sized surerconcentrators.” J.
Comp. Sys. Sci. 22(1981) 407-420.

(6] D.E. Knuth, The Art of Computer Programming, Vol.3, "Sorcng and Searching”
(Addison-Wesley 1973).

(7] A. Lubotzky, R. Phillips and P. Sarnak, "Explicit expanders and the Ramanujan
conjectures,” Proc. 18th Ann. ACM Svmp. on Theory of Compuring (1986) 240-246.

(8] G.A. Margulis, "Explicit constructons or concentrators,” Problemy inr. Trans. 9(19772;
@ e ™ Tl

(9] H. Robbins, "A remark on Suarling's formuia.” Amer. Math. Monrhly 62{1953) 26-29.




Appendix  (Proof of Halver Theorem)
Theorem For O0<e<12, O<c<1 and n> 0, there exisis an (g, «o)-halver for 2n elements
with depth C(a, €) = [G(e, €) | where:

G(u,g) = 1+ (h(sa) F h((l-e)a)) / (—ea ln((l-s)a)),
and:

h(x) = -xInx — (1-x) In (1-x).
Proof We shall describe the halving networks in terms of comparison algorithms using storage
registers and compare-and-exchange operations on pairs of these registers. This is an equivalent
model to that with wires and comparators used above. The registers are divided into equal sets A
and B with n registers in each. At every step of the algorithm, comparisons are mace betwesn
the contents of n disjoint pairs of registers, one from A 2-¢ one from B. For each pair an
exchange is made if necessarv so that the more 'left’ value is cut in the A-register and the more
'right’ in the B-register. Suppose that the algorithm procezcs in this way for ¢ steps and at step
I, 1 <i<c, the set of pairs to be compared is given by the bijecdon g;: A—B, ie.forall ae A,
registers a€ A and gy(a) € B are compared. We will find that for ¢ sufficiently large mosrt of
the algorithms of this form satisfy our halving condition. The :otal number of distinct algorithms
with ¢ steps is exactly (n!)¢. We calculate an upper bound Zor the number of such algorithms

which fail to be (g, o)-halvers.

Consider a failing algorithm Q and some set of inputs for which Q fails. Thus thereisa k € on
such that the set S of the k righmost (or leftrnost) input elements is badly distributed at the end
of the algorithm, i.e. some set X of A-registers (or B-registers respectvely) of size r={ek| stil
contains r elements of S. Since forany r we may as well choose k maximal subjectto r =/ k|

and k < cmn, we can assume k = max( [r/e}, an]}. A sufficient set of pairs < r,X > to cover all

possible failing algorithms is given by:

R(n, g, @) = {<r,k>l1<r<Ep,k=Lr/s_[}u{<f'€p-é,p>} where p =|an|.

This follows from the inequalites:
U-Ep-l/€_]2p and L(rsp]-—l)/gj<p.
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Without loss of generality we consider the case X — A. It is clear that the contents of any ‘A- -
register can only become more 'left’ as the result of an exchange, whilst B-registers become more
right. Therefore at the beginning of the algorithm X contained elements from S, and
furthermore every B-register compared with any register in X during the algorithm must have
also contained an element of S at the time and so will stll do so at the end of the algorithm.
Denoting the whole set of such B-registers by Q(X), we have shown that:

QX)) | < k-1
Forany X c A with IXl=r, and Y ¢ B with |Y] =k — 1, the number of bijecdons g: A —B
such that g(X) Y is

k-pln-n!/(k-20!
Taking into account the number of possible choices for r, X and Y, and the alternacives of X < A

or X < B, we obtain an upper bound for the proportion, P(c), of failing algorithms with ¢ steps

of:

PO < 25 ()6 (<0/6))

<x.k>eR(n,g,a)

< 2% () () (xn/n)™C

R(n,g,a)
We define h on the interval [0,1] by:
h(x) =-x1n x = (1-x) In (1-x) for 0 <x <1, and

h(0) =h(1) =0.
h is a familiar entropy funcsdon except that we find it more convenient here to use natural

logarithms. The approximation we shall use for binomial coefficients is given in the following

lemma.

Lemma For n>0 and O<r<n,

111(“;) < n-h(x/n) - Y,In(min{r, n-r}) - sIn .

Proof A result of Robbins [9] vields the following inequalides:

1/(12n+1) < Inn! +n~-nlnn-150n2x+Inn) < 1/(12n) for n>0.
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Hence for 0 <r<n,
In{(n_) = n-h(r/n) + Yyln(min(r, n-r})
< -Ypln(max(r, n-r}) + Iplnn - 1/,In 27 + 1/(12n) = 1/(12r+1) - l/(lZ(n-r)+1).

<-plnm 4

Now, .
n{ () () (Ger/) ™}

<n{h(/n) + h((k-r)/n) + cr/n- In((k-1)/n) } = oln r = 1In(min{k-r, n-k+r)) —In 7
<rln(k-r)/n) —Int —Inm since min{k-r, n-k+r) > 1,

provided we choose a value for ¢ sadsfving:

c=>1+ (h(r/n) + h((k-r)/n))/(-r/n- m(’f(k—r)/n)) = G(/n 1/k).

If we can choose ¢ to satisfy this inequality for all vajues of r and k iz the summaton then:

P < 22250 « Yk

R{n,e, o) R(n,s,a)
2[en] 1 2 1
= RENE R G )
<= S ﬁ(lvgn) < 1 for en22.

If en <2 then P(c) <1 follows immediately since r < iﬁspﬂl <2

All that remains to be proved is that ¢ ={G(a, €)] is an adequate choicz for ¢. Sinceall <r, x>
in R(n, g, &) sadsfy r/k>¢€ and k/n < the inequality, ¢ 2 G(k/n, 7/k), is satsiied provided

that G(c, €) is an increasing function of & and a decreasing funcdon or €.

Lemma Forall O<a<1, O<e<1,
(i) aG/oe < O,
and (ii) 9G/da. > 0 if g< /s,




Proof
Let u=h(ea) + h((1-e)ct), v = -gq In((1-g)et, and F=u/v. Then uv >0 and G(a,e) =1 + F.

Now,

il

evOF/3¢ = e(Ou/5, - F9¥/3¢)

1

-ex In(ea) +ea In(l-eq) - e In((1-8)a) + eax In(1-(1-g)ct) — u — Fe2c2/(1-¢)

i

ea In(1-e0) + ¢t In((1-g)ex) + (1-cx) In(1-(1-€)er) — Fe202/(1-¢)

<0 forall O<ax<], 0<£<1,and(i)isproved.

Similarly for (i), if & < 1/,,
vIF/ze = (@30 - FVf3e)

it

-€ In(ect) + eat In(1-gqr) — (I-8a In((i-g)cr) + (1-g)ee In(1-(F-gice) — o = Fare

In(l-ex) + In(1-(1-8)ar) + Fenr

il

2 In(l-ea) - h(za)/In(eq) + In(1-(1-8)c) - A(l-e)e)/In((1-e)cx) sirnes 12> e
> 0 since h(v)>In v-n(l-v) for 0 < V< 1.

This inequality for h follows from the substitutions z = v and z=(l-y) in the simple inequaliry:

z > (l-z)In(1-z) for 0<z<1. ¢

Establishing this lemma completes the proof of the Halyer Theorem. «




