INF5063: Programming heterogeneous multi-core processors

Introduction

September 13, 2010
Overview

- Course topic and scope
- Background for the use and parallel processing using heterogeneous multi-core processors
- Examples of heterogeneous architectures
INF5063: The Course
People

- Håvard Espeland
 email: haavares @ ifi

- Håkon Kvale Stensland
 email: haakonks @ ifi

- Carsten Griwodz
 email: griff @ ifi

- Pål Halvorsen
 email: paalh @ ifi
Time and place

- **Lectures:**
 Fridays 13.15 – 15.00
 Store Aud. ??? Veilabben???

- **NB!**
 The web page states that we will have **group exercises** on
 Thursdays 10.15 - 12.00, 3B.
 However, there will **NOT** be any weekly exercises, but
 this hour is assigned for your mandatory assignments
 (we will NOT be there).
About INF5063: Topic & Scope

- **Content:** The course gives ...
 - ... an overview of heterogeneous multi-core processors in general and three variants in particular and a modern general-purpose core (architectures and use)
 - ... an *introduction* to working with heterogeneous multi-core processors
 - Intel IXP 2400 network processor card
 - SSEx for x86
 - nVIDIA’s family of GPUs and the CUDA programming framework
 - The Cell Broadband Engine Architecture
 - ... some ideas of how to use/program heterogeneous multi-core processors
About INF5063: Topic & Scope

Tasks:
The important part of the course is lab-assignments where you program each of the three examples of heterogeneous multi-core processors.

1 exercise (not graded) on Intel IXP
- packet counter – download, run and extend wwpingbump

3 graded home exams (counting 33% each):
- Deliver code
- Make a demonstration and explain your design and code to the class
1. On the x86
 - Video encoding – Improve performance of video compression by using SSE instructions.
2. On the NVIDIA graphics cards
 - Video encoding – Improve the performance of video compression by using the G80 architecture
3. On the Cell processor
 - Video encoding – the same as above, but exploit the parallelity of the Cell processor’s SBEs
Available Resources

Resources will be placed at

- http://www.ifi.uio.no/~griff/INF5063
- Login: inf5063
- Password: ixp

- Manuals, papers, code example, ...
Background and Motivation:

Moore’s Law
Motivation: Intel View

- >billion transistors integrated

2010:
- 2,3 billion - Intel 8-Core Xeon Nehalem-EX
- 3,0 billion - nVidia GF100 (Fermi)
Motivation: Intel View

- >billion transistors integrated
- Clock frequency **can** still increase

![Graph showing the increase in clock frequency from 1970 to 2020. The graph indicates a trend where the clock frequency has increased significantly from 8080 MHz in 1970 to 15-30 GHz by 2010, with the prediction that it can still increase.](image-url)
Motivation: Intel View

- >billion transistors integrated
- Clock frequency can still increase
- Future applications will demand TIPS

2010:
147,600 MIPS @ 3.3 GHz – Intel Core i7
Extreme Edition i980EE (6 cores)
Motivation: Intel View

- >billion transistors integrated
- Clock frequency **can** still increase
- Future applications will demand TIPS
- Power? Heat?
Motivation: Intel View

And Power Density Grows

- Soon > billion transistors integrated
- Clock frequency can still increase
- Future applications will demand TIPS
- Power? Heat?
Motivation

“Future applications will demand TIPS”

“Think platform beyond a single processor”

“Exploit concurrency at multiple levels”

“Power will be the limiter due to complexity and leakage”

Distribute workload on multiple cores
Symmetric Multi-Core Processors

Phenom X4
Symmetric Multi-Core Processors

UltraSparc
Symmetric multi-processors allow multi-threaded applications to achieve higher performance at less die area and power consumption than single-core processors.
Symmetric Multi-Core Processors

- **Good**
 - Growing computational power

- **Problematic**
 - Growing die sizes
 - Unused resources
 - Some cores used much more than others
 - Many core parts frequently unused

- **Why not spread the load better?**
 - Functions exist only once per core
 - Parallel programming is hard

⇒ Asymmetric multi-core processors
Asymmetric Multi-Core Processors

- Asymmetric multi-processors consume power and provide increased computational power only on demand.
Motivation

“Future applications will demand TIPS”

“Think platform beyond a single processor”

“Exploit concurrency at multiple levels”

“Power will be the limiter due to complexity and leakage”

Distributed workload on multiple cores
+ simple processors are “easier” to program
+ consume less energy

heterogeneous multi-core processors
Co-Processors

- The original IBM PC included a socket for an Intel 8087 floating point co-processor (FPU)
 - 50-fold speed up of floating point operations

- Intel kept the co-processor up to i486
 - 486DX contained an optimized i487 block
 - Still separate pipeline (pipeline flush when starting and ending use)
 - Communication over an internal bus

- Commodore Amiga was one of the earlier machines that used multiple processors
 - Motorola 680x0 main processor
 - Blitter (block image transferrer - moving data, fill operations, line drawing, performing boolean operations)
 - Copper (Co-Processor - change address for video RAM on the fly)
What now – are today’s cores really “Symmetric”?

Nehalem
Review of General Data Path on Conventional Computer Hardware Architectures

Sending:
- Communication
- System

Receiving:
- Application
- Communication
- Communication

Forwarding:
- Transport (TCP/UDP)
- Network (IP)
- Link

Copy On Write
Checksumming
Fragmentation
Interrupts
Network Processors: Main Idea

Traditional system:
- slow
- resource demanding
- shared with other operations

Network processors:
- a computer within the computer
- special, programmable hardware
- offloads host resources
IXA: Internet Exchange Architecture

- **IXA**
 - a broad term to describe the Intel network architecture
 - HW & SW, control- & data plane

- **IXP**: Internet Exchange Processor
 - processor that implements IXA
 - IXP1200 is the first IXP chip
 (4 versions)
 - IXP2xxx has now replaced the first version
IXA: Internet Exchange Architecture

IXP1200 basic features
- 1 embedded 232 MHz StrongARM
- 6 packet 232 MHz \(\mu \)engines
- onboard memory
- 4 x 100 Mbps Ethernet ports
- multiple, independent busses
- low-speed serial interface
- interfaces for external memory and I/O busses
- ...
IXA: Internet Exchange Architecture

- **IXP2400 basic features**
 - 1 embedded 600 MHz XScale
 - 8 packet 600 MHz \(\mu \)engines
 - onboard memory
 - 3 x 1 Gbps Ethernet ports
 - multiple, independent busses
 - low-speed serial interface
 - interfaces for external memory and I/O busses
 - ...

[Image of a network card with Ethernet ports]
IXP1200 Architecture

- **RISC processor:**
 - StrongARM running Linux
 - Control, higher layer protocols and exceptions
 - 232 MHz

- **Microengines:**
 - Low-level devices with limited set of instructions
 - Transfers between memory devices
 - Packet processing
 - 232 MHz

- **Access units:**
 - Coordinate access to external units

- **Scratchpad:**
 - On-chip memory
 - Used for IPC and synchronization

- **SRAM:**
 - On-chip memory
 - Used for IPC and synchronization
IXP2400 Architecture

IXP2400

- SRAM
- coprocessor
- FLASH
- DRAM
- PCI bus
- Embedded RISK CPU (XScale)
- microengine 1
- microengine 2
- microengine 3
- microengine 4
- microengine 5
- ... microengine 8

- SRAM access
- PCI access
- SCRATCH memory
- slowport access
- SDRAM access
- MSF access

- DRAM bus
- SRAM bus
- receive bus
- transmit bus

- multiple independent internal buses

- microengine 3
- microengine 4
- microengine 5
- ... microengine 8
Graphics Processing Units (GPUs)

A dedicated graphics rendering device

First GPUs,
- 80s: for early 2D operations
 - Amiga and Atari used a blitter,
 - Amiga had also the copper
- 90s: 3D hardware for game consoles like PS and N64
 - 3dfx Voodoo 3D add-on card for PCs

New powerful GPUs, e.g.:
- Nvidia GeForce GX280
 - 240 1476 MHz core
 - 1 GB memory
 - memory BW: 159 GB/sec
 - PCI Express 2.0

- similar to other manufacturers ...
General Purpose Computing on GPU

- The
 - high arithmetic precision
 - extreme parallel nature
 - optimized, special-purpose instructions
 - available resources
 - ...

... of the GPU allows for general, non-graphics related operations to be performed on the GPU

- Generic computing workload is off-loaded from CPU and to GPU

⇒ More generically:
 Heterogeneous multi-core processing
nVIDIA G200 / GF100

- 1.4 / 3 billion transistors
- 240 / 512 shaders

- 512 / 384 bit memory bus
 (GDDR3 / 5)
- 159 / 177 GB/sec memory bandwidth

- 933 / 1344 Gflops

- PCI Express 2.0
nVIDIA GT200

- Stream Multiprocessors (SMs)
 - fundamental thread block unit
 - 8 stream processors (SPs) (scalar ALU for threads)
 - 2 super function units (SFUs) (cos, sin, log, ...)
 - 8 32KB local register files (RFs)
 - 16 kB level 1 cache
 - 64 kB shared memory
 - 256 kB global level 2 cache

- Number of stream multiprocessors
 - 1 - Quadro NVS 130M
 - 16 - GeForce 8800 GTX
 - 30 - GeForce GTX 285
 - 4x30 - Tesla S1070
STI (Sony, Toshiba, IBM) Cell

- Motivation for the Cell
 - Cheap processor
 - Energy efficient
 - For games and media processing
 - Short time-to-market

- Conclusion
 - Use a multi-core chip
 - Design around an existing, power-efficient design
 - Add simple cores specific for game and media processing requirements
STI (Sony, Toshiba, IBM) Cell

- **Cell is a 9-core processor**
 - combining a light-weight general-purpose processor with multiple co-processors into a coordinated whole

 - *Power Processing Element (PPE)*
 - conventional Power processor
 - not supposed to perform all operations itself, acting like a controller
 - running conventional OSes
 - 16 KB instruction/data level 1 cache
 - 512 KB level 2 cache
STI (Sony, Toshiba, IBM) Cell

- **Synergistic Processing Elements (SPE)**
 - specialized co-processors for specific types of code, i.e., very high performance vector processors
 - local stores
 - can do general purpose operations
 - the PPE can start, stop, interrupt and schedule processes running on an SPE

- **Element Interconnect Bus (EIB)**
 - internal communication bus
 - connects on-chip system elements:
 - PPE & SPEs
 - the memory controller (MIC)
 - two off-chip I/O interfaces
 - 25.6 GBps each way
STI (Sony, Toshiba, IBM) Cell

- Memory controller
 - Rambus XDRAM interface to Rambus XDR memory
 - dual channels at 12.8 GBps → 25.6 GBps

- I/O controller
 - Rambus FlexIO interface which can be clocked independently
 - dual configurable channels
 - maximum ~ 76.8 GBps
STI (Sony, Toshiba, IBM) Cell

- Cell has in essence traded running everything at moderate speed for the ability to run certain types of code at high speed

- used for example in
 - **Sony PlayStation 3**:
 - 3.2 GHz clock
 - 6 SPEs for general operations
 - 1 SPE for security for the OS

 - **Toshiba home cinema**:
 - decoding of 48 HDTV MPEG streams
 → dozens of thumbnail videos simultaneously on screen

 - **IBM blade centers**:
 - 3.2 GHz clock
 - Linux ≥ 2.6.11
The End: Summary

- Heterogeneous multi-core processors are already everywhere

Challenge: programming
- Need to know the capabilities of the system
- Different abilities in different cores
- Memory bandwidth
- Memory sharing efficiency
- Need new methods to program the different components

- Next time: how to start programming the **Intel IXP**