
ARMv8 Neon Programming
-BY KRISTOFFER ROBIN STOKKE, FLIR UAS



Goals of Lecture
To give you something concrete to start on

Simple introduction to ARMv8 NEON programming environment
Register environment, instruction syntax

«Families» of instructions

Important for debugging, writing code and general understanding

Programming examples
Intrinsics

Inline assembly

Performance analysis using gprof

Introduction to GDB debugging



Keep This Under Your Pillow

GNU compiler intrinsics list:
o https://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/ARM-NEON-Intrinsics.html

ARM Infocenter
o infocenter.arm.com 

-> developer guides (..) -> software development -> Cortex A series Programmer’s Guide for arm8

This may also be useful
https://community.arm.com/groups/android-community/blog/2015/03/27/arm-neon-programming-

quick-reference

https://community.arm.com/processors/b/blog/posts/coding-for-neon---part-1-load-and-stores

Last but not least – GDB
You will need it

https://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/ARM-NEON-Intrinsics.html
https://community.arm.com/groups/android-community/blog/2015/03/27/arm-neon-programming-quick-reference


ARMv8 Registers

X0 X8 x16 x24

31 x 64-bit general purpose registers

V0 V8 V16 V24

32 x 128-bit vector registers

SP

WSP

Stack pointer
WZR

Zero registers

XZR

PC



The Vector Registers V0-V31: Packing
Data in V0-V31 are packed, and you control how they are packed

Example: 16 bytes or 8 bytes

Example: 8 half-words or 4 half-words

Lanes



Example: Vector Packing



Instruction Syntax



Programming With Intrinsics

More in a bit!



Programming Example: Intrinsics



Inline Assembly
Mostly harder than using intrinsics
However, gives more control (and better performance?)

Not always straightforward to figure out what mnemonics to use
Tips: disassemble intrinsics and look with objdump or gdb

Operand constraints
> «m» : memory address
> «r» : general purpose register
> «f» : floating point register
> «i» : immediate

++ more

Specify dirty registers and 
more



Programming Example: Inline Assembly



Table Lookup
Not straightforward to use for any purpose

Vector table lookup: vtbl v0, {v1, v2, ..., vn}, vm
V0: destination vector

{v1, v2, ..., vn}: source data

vm: data selector

v1 v2

v0

vm

0 8 4 6 0 8 4 6 0 18 4 18 24 25 14 19

0 15 3116



Matrix Transpose

a b

c d

a c

b d

a cb d

0 12 3

a c b d

tbl v0.4s, {v1.4s}, v2.4s

v0.4s

v1.4s

v2.4s

stride

stride

Think like this:
For each output row,
select increasing column



Code Profiling
Compile with –pg

Run application: ./main

Run gprof ./main gmon.out 

0

10

20

30

40

50

60

70

80

90

100

Transpose, lazy Transpose, NEON
assembly

MM, NEON intrinsics MM, NEONassembly

Time to Finish 100M computations for Matrix Multiply 
(MM) and Transpose Operations

Series 1 Column1 Column2



GDB Example



Tips
Build functions to print out macroblocks from vector registers and memory

Start small – test out independent parts of the code that are easy to verify

When in trouble, step through the code, display the relevant registers, verify with output you 
know is working

Many things to investigate
Single versus double precision?

Different, possibly more ways to implement e.g. transpose?

Re-using vector registers across different functional blocks?

..but stick to what the assignment says



Good Luck!
You’re going to need it 



ARMv7 vs. ARMv8

Armv8 uses the same mnemonics as for general purpose registers
E.g., in ARMv7, «mul, r0, r0, r1» (normal) and «vmul d0, d0, d1» (SIMD)

In ARMv8: «mul x0, x0, x1» (normal) and «mul v0, v0, v1» (SIMD)

Simplifies life, but take care to use correct operands

ARMv8 has twice as many 128-bit registers
32 128-bit registers, vs 16 128-bit registers for ARMv7

Different instruction syntax


