
ARMv8 Neon Programming
-BY KRISTOFFER ROBIN STOKKE, FLIR UAS



Goals of Lecture
To give you something concrete to start on

Simple introduction to ARMv8 NEON programming environment
Register environment, instruction syntax

«Families» of instructions

Important for debugging, writing code and general understanding

Programming examples
Intrinsics

Inline assembly

Performance analysis using gprof

Introduction to GDB debugging



Keep This Under Your Pillow

GNU compiler intrinsics list:
o https://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/ARM-NEON-Intrinsics.html

ARM Infocenter
o infocenter.arm.com 

-> developer guides (..) -> software development -> Cortex A series Programmer’s Guide for arm8

This may also be useful
https://community.arm.com/groups/android-community/blog/2015/03/27/arm-neon-programming-

quick-reference

https://community.arm.com/processors/b/blog/posts/coding-for-neon---part-1-load-and-stores

Last but not least – GDB
You will need it

https://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/ARM-NEON-Intrinsics.html
https://community.arm.com/groups/android-community/blog/2015/03/27/arm-neon-programming-quick-reference


ARMv8 Registers

X0 X8 x16 x24

31 x 64-bit general purpose registers

V0 V8 V16 V24

32 x 128-bit vector registers

SP

WSP

Stack pointer
WZR

Zero registers

XZR

PC



The Vector Registers V0-V31: Packing
Data in V0-V31 are packed, and you control how they are packed

Example: 16 bytes or 8 bytes

Example: 8 half-words or 4 half-words

Lanes



Example: Vector Packing



Instruction Syntax



Programming With Intrinsics

More in a bit!



Programming Example: Intrinsics



Inline Assembly
Mostly harder than using intrinsics
However, gives more control (and better performance?)

Not always straightforward to figure out what mnemonics to use
Tips: disassemble intrinsics and look with objdump or gdb

Operand constraints
> «m» : memory address
> «r» : general purpose register
> «f» : floating point register
> «i» : immediate

++ more

Specify dirty registers and 
more



Programming Example: Inline Assembly



Table Lookup
Not straightforward to use for any purpose

Vector table lookup: vtbl v0, {v1, v2, ..., vn}, vm
V0: destination vector

{v1, v2, ..., vn}: source data

vm: data selector

v1 v2

v0

vm

0 8 4 6 0 8 4 6 0 18 4 18 24 25 14 19

0 15 3116



Matrix Transpose

a b

c d

a c

b d

a cb d

0 12 3

a c b d

tbl v0.4s, {v1.4s}, v2.4s

v0.4s

v1.4s

v2.4s

stride

stride

Think like this:
For each output row,
select increasing column



Code Profiling
Compile with –pg

Run application: ./main

Run gprof ./main gmon.out 

0

10

20

30

40

50

60

70

80

90

100

Transpose, lazy Transpose, NEON
assembly

MM, NEON intrinsics MM, NEONassembly

Time to Finish 100M computations for Matrix Multiply 
(MM) and Transpose Operations

Series 1 Column1 Column2



GDB Example



Tips
Build functions to print out macroblocks from vector registers and memory

Start small – test out independent parts of the code that are easy to verify

When in trouble, step through the code, display the relevant registers, verify with output you 
know is working

Many things to investigate
Single versus double precision?

Different, possibly more ways to implement e.g. transpose?

Re-using vector registers across different functional blocks?

..but stick to what the assignment says



Good Luck!
You’re going to need it 



ARMv7 vs. ARMv8

Armv8 uses the same mnemonics as for general purpose registers
E.g., in ARMv7, «mul, r0, r0, r1» (normal) and «vmul d0, d0, d1» (SIMD)

In ARMv8: «mul x0, x0, x1» (normal) and «mul v0, v0, v1» (SIMD)

Simplifies life, but take care to use correct operands

ARMv8 has twice as many 128-bit registers
32 128-bit registers, vs 16 128-bit registers for ARMv7

Different instruction syntax


