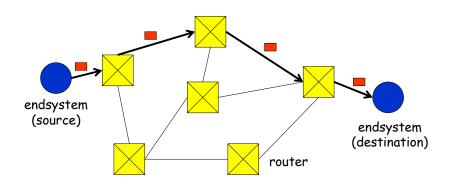
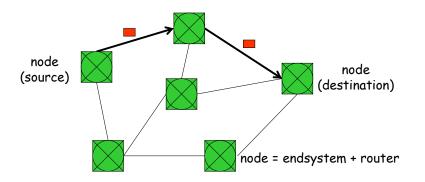


Message Routing & Event Notification in Sparse Mobile Networks

Thomas Plagemann & Katrine S. Skjelsvik Distributed Multimedia Systems Group Department of Informatics University of Oslo

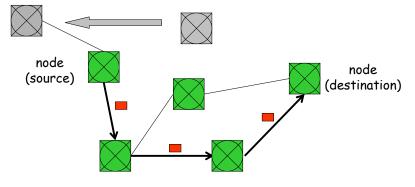

What are we teaching?

Outline


- Part I: Message routing
 - Background, motivation, overview
 - Epidemic routing
 - Message ferrying
 - Mobility/density space
 - Acknowledgement: Many transparencies are from Mustafar Ammar's keynote talk at Co-Next 2005
- Part II: Event notification
 - PhD Defense presentation from Katrine S. Skjelsvik

Traditional Wired Networks

- separation between endsystems and routers
- · routers responsible for finding stable path


"Traditional" Mobile Ad-hoc Wireless Networks (MANET)

- · no separation between endsystems and routers
- · nodes responsible for finding stable path

[M. Ammar, Co-Next 2005]

"Traditional" Mobile Ad-hoc Wireless Networks (MANET)

- nodes may move
- routing layer responsible for reconstructing (repairing) stable paths when movement occurs

[M. Ammar, Co-Next 2005]

The "Traditional" MANET Wireless Paradigm

- The Network is "Connected"
 - There exists a (possibly multi-hop) path from any source to any destination
 - The path exists for a long-enough period of time to allow meaningful communication
 - If the path is disrupted it can be repaired in short order
 - "Looks like the Internet" above the network layer

The Rise of Sparse Disconnected Networks

Sparse Wireless Networks

- Disconnected
 - By Necessity
 - By Design (e.g. for power considerations)
- Mobile
 - With enough mobility to allow for some connectivity over time
 - Data paths may not exist at any one point in time but do exist over time

Mobility-Assisted Data Delivery: A New Communication Paradigm

- · Mobility used for connectivity
- New Forwarding Paradigm

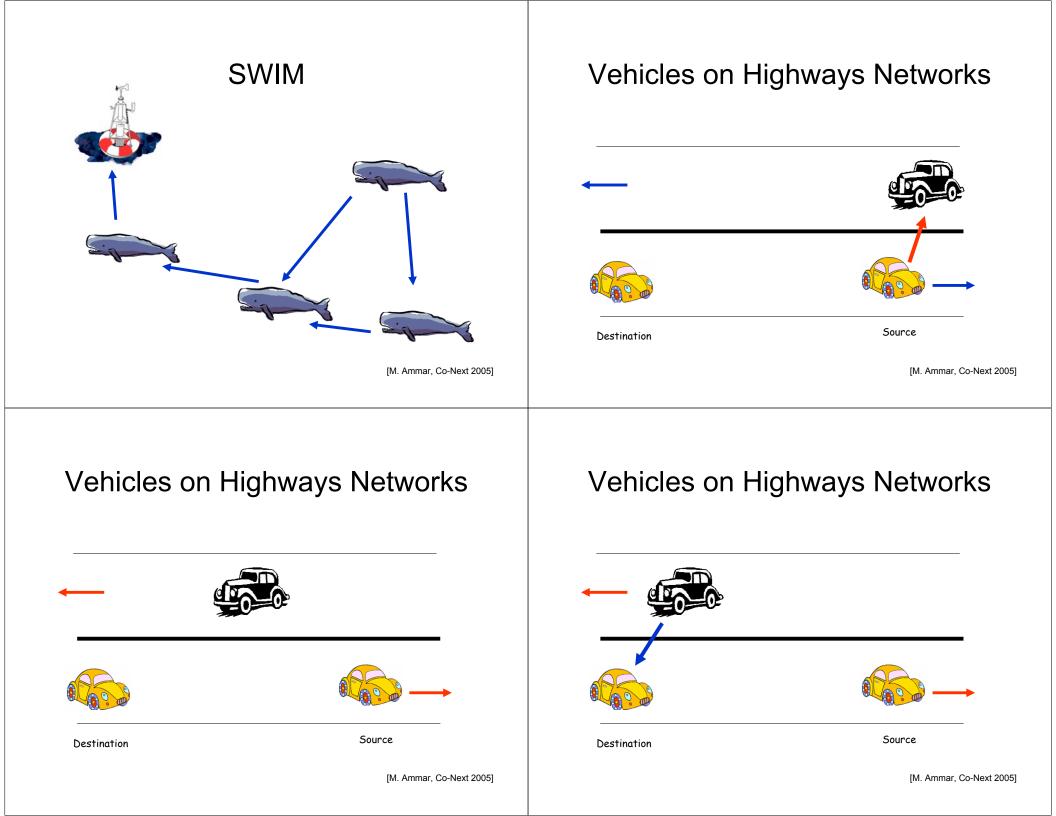
Store

Carry for a while

forward

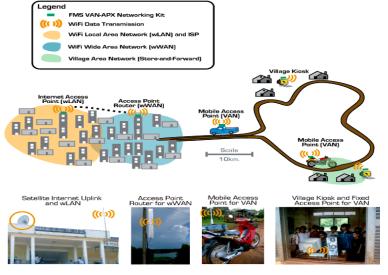
• Special nodes: Transport entities that are not sources or destinations

[M. Ammar, Co-Next 2005]


Data Applications

- Nicely suitable for Message-Switching
- Delay tolerance ... but can work at multiple time scale (a.k.a. *Delay Tolerant Networks*)

Some Delay-Tolerant Systems


- ZebraNet and SWIM
- Data MULE and Smart-Tags
- Vehicle-to-Vehicle Communication
- DakNet
- Epidemic Routing
- Message Ferrying

[M. Ammar. Co-Next 2005]

DakNet

(Pentland, Fletcher, and Hasson)

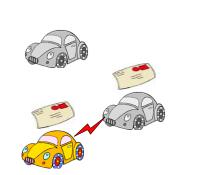
[M. Ammar, Co-Next 2005]

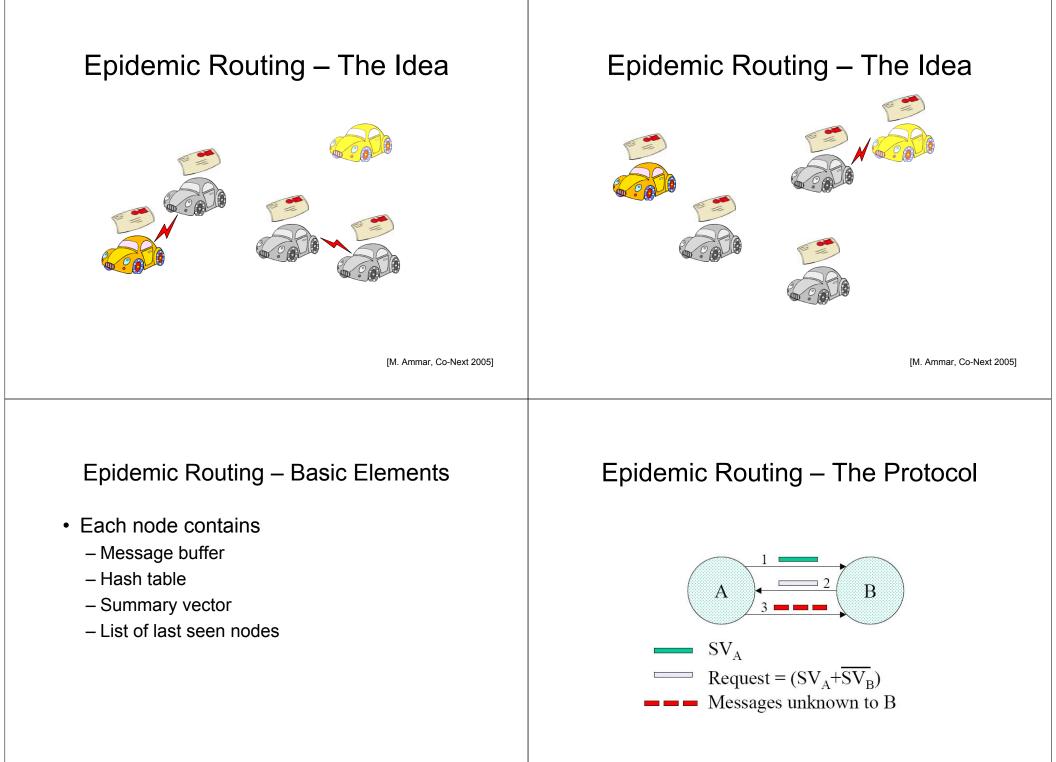
Epidemic Routing

- · Vahdat and Becker
- Utilize physical motion of devices to transport data
- Store-carry-forward paradigm
 - Nodes buffer and carry data when disconnected
 - Nodes exchange data when met
 - data is replicated throughout the network
- Robust to disconnections
- · Scalability and resource usage problems

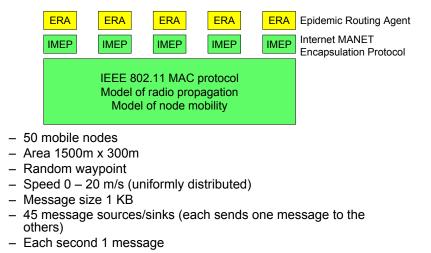
[M. Ammar, Co-Next 2005]

Epidemic Routing – The Idea

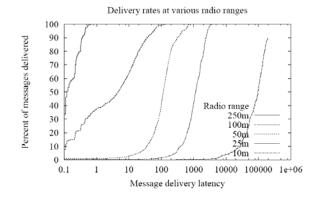




Epidemic Routing – The Idea


[Vahdat & Becker, TechReport 200]

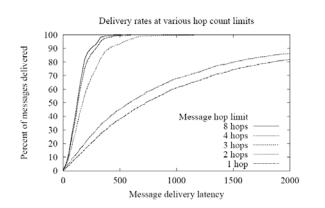
Epidemic Routing – Multiple Hops


- Each message contains:
 - Unique message ID
 - Hop count
 - Ack request (optional)
- Tradeoff buffer size vs. message delivery

Epidemic Routing – Evaluation

• Implementation in ns-2

Epidemic Routing – Evaluation


Epidemic Routing – Evaluation

Range	Delivery	Baseline	Latency		Hops		Coverage
	Rate (%)	Rate	Avg (s)	Max (s)	Avg	Max	Floor
250 m	100.0	98.2	0.2	1	2.4	8	10.91%
100 m	100.0	34.3	12.8	177	6.3	21	1.75%
50 m	100.0	0.9	153.0	760	3.7	14	0.44%
25 m	100.0	0.0	618.9	3758	3.3	9	0.11%
10 m	89.9	0.0	44829.7	198107	3.4	9	0.02%

Table 1: Characteristics of Epidemic Routing as a function of transmission range.

Figure 3: CDF for message delivery as a function of transmission range.

[Vahdat & Becker, TechReport 2000]

Epidemic Routing – Evaluation

Figure 4: CDF for message delivery as a function of maximum number of hops in packet delivery for 50 m transmission range.

[Vahdat & Becker, TechReport 2000]

Epidemic Routing – Evaluation

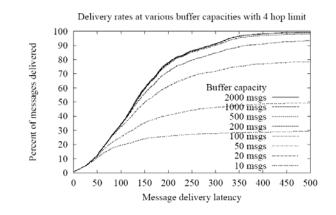


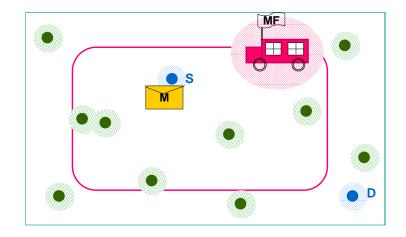
Figure 5: CDF for message delivery as a function of available buffer space for 50 m transmission range.

[Vahdat & Becker, TechReport 2000]

Epidemic Routing – Evaluation

Buffer	Delivery	Latency	Buffer Utilization				
Size	Rate (%)	Avg (s)	Dead	Buffers	Lifetime (s)	Live	Buffers
2000	100.0	147.3	0	N/A	N/A	1980	44.6
1000	100.0	148.7	178	23.3	2721	1802	30.3
500	100.0	149.2	992	18.0	1664	988	25.4
200	99.6	152.0	1479	12.1	967	501	19.2
100	95.2	157.5	1708	8.4	691	272	16.9
50	79.7	148.2	1826	5.9	491	154	14.9
20	50.2	129.5	1897	3.9	298	83	11.0
10	29.3	98.9	1935	2.9	198	45	9.9

Table 2: Resource consumption characteristics of Epidemic Routing for 50 m transmission range, 4 hops, and variable buffer size.


The Trouble with ER

- Potentially high-failure rate
- Message duplication consumes nodal resources
- Some mobility patterns can cause disconnection
- Can be improved with contact probability information Levine et al

Message Ferrying (MF) @ GT

- Zhao and Ammar
- Exploit *non-randomness* in device movement to deliver data
 - A set of nodes called *ferries* responsible for carrying data for all nodes in the network
 - Store-carry-forward paradigm to accommodate disconnections
- Ferries act as a moving communication infrastructure for the network

Message Ferrying – The Idea

[M. Ammar, Co-Next 2005]

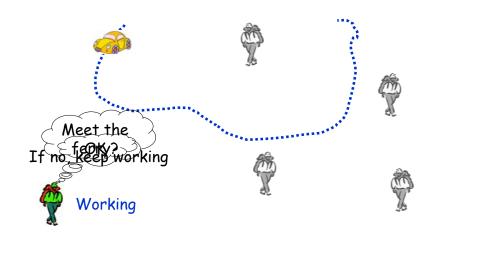
MF Variations

- Ferry Mobility
 - Task-oriented, e.g., bus movement
 - Messaging-oriented, e.g., robot movement
- Regular Node Mobility
 - Stationary
 - Mobile: task-oriented or messaging-oriented
- Number of ferries and level of coordination
- Level of regular node coordination
- Ferry designation
 - Switching roles as ferry or regular node

MF for Networks with Mobile Nodes

- Nodes are mobile and limited in resources, e.g., buffer, energy
- Single ferry is used
 - Not limited in buffer or energy
 - Trajectory of the ferry is known to all nodes
- Data communication in messages
 - Application layer data unit
 - Message timeout

[M. Ammar. Co-Next 2005]

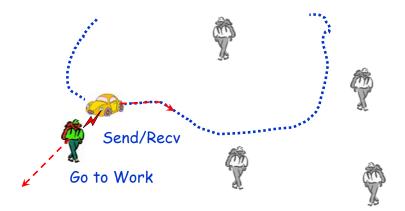

Four Approaches

- Non-Proactive (= Messaging-Specific) mobility
 - Ferrying without Epidemic Routing
 - Ferrying with Epidemic Routing

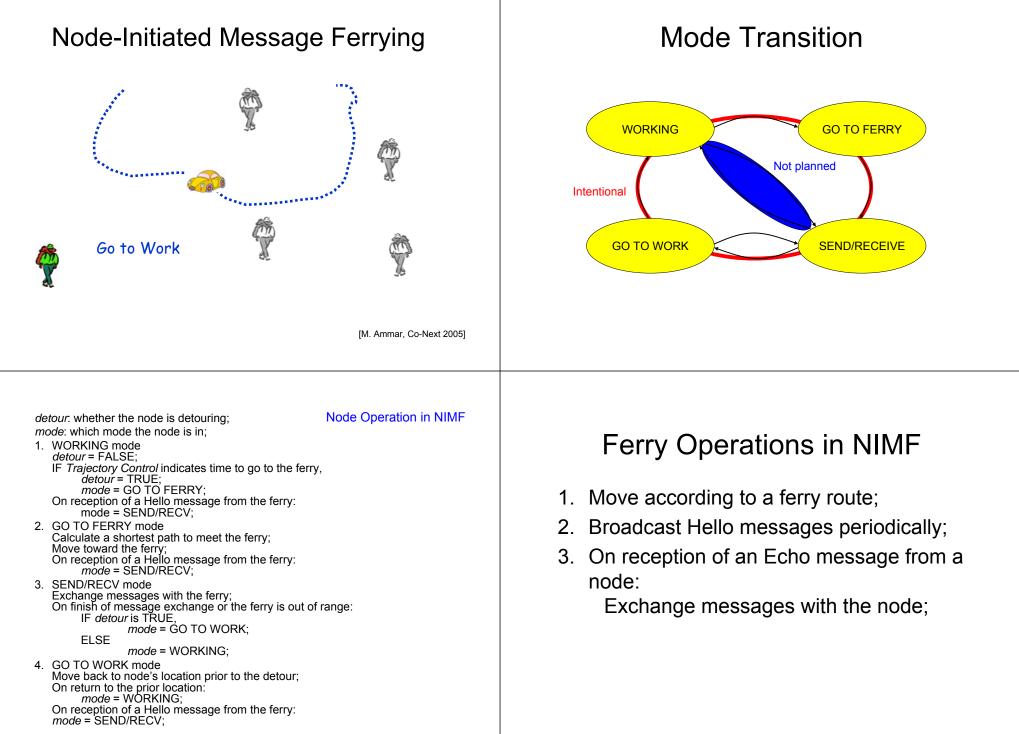
Proactive Routing Schemes

- Node-Initiated MF(NIMF)
 - Nodes move to meet ferry
- Ferry-Initiated MF (FIMF)
 - Ferry moves to meet nodes

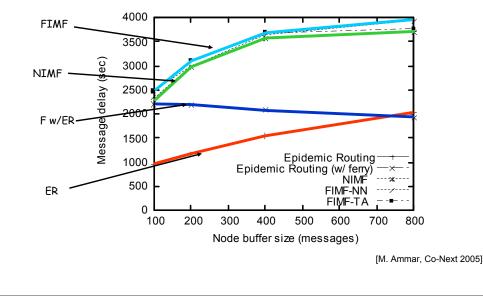
Node-Initiated Message Ferrying



[M. Ammar, Co-Next 2005]


Node-Initiated Message Ferrying

Node-Initiated Message Ferrying


[M. Ammar, Co-Next 2005]

Node Trajectory Control Simulations Whether node should move to meet the ferry Ns simulations using 802.11 MAC and Goal: minimize message drops and reduce default energy model ٠ proactive movement 40 nodes in 5km x 5km area • Go to ferry if 25 random (source, destination) pairs - Work-time percentage > threshold Node mobility – and - random-waypoint with max speed 5m/s Estimated message drop percentage > threshold Message timeout: 8000 sec Single ferry with speed 15m/s - Rectangle ferry route [M. Ammar, Co-Next 2005] [M. Ammar, Co-Next 2005] Performance Metrics Message Delivery Rate Message delivery rate FIMF 0.5 Message Delay 0.8 at Number of delivered messages per unit NIMF 0.7 **Message** delivery 0.6 energy F w/ER - Only count transmission energy in regular 0.4 nodes 0.3 Epidemic Routing Epidemic Routing (w/ ferry) 0.2 NIMÉ FIMF-NN ER 0.1 100 200 300 400 500 600 700 800 Node buffer size (messages)

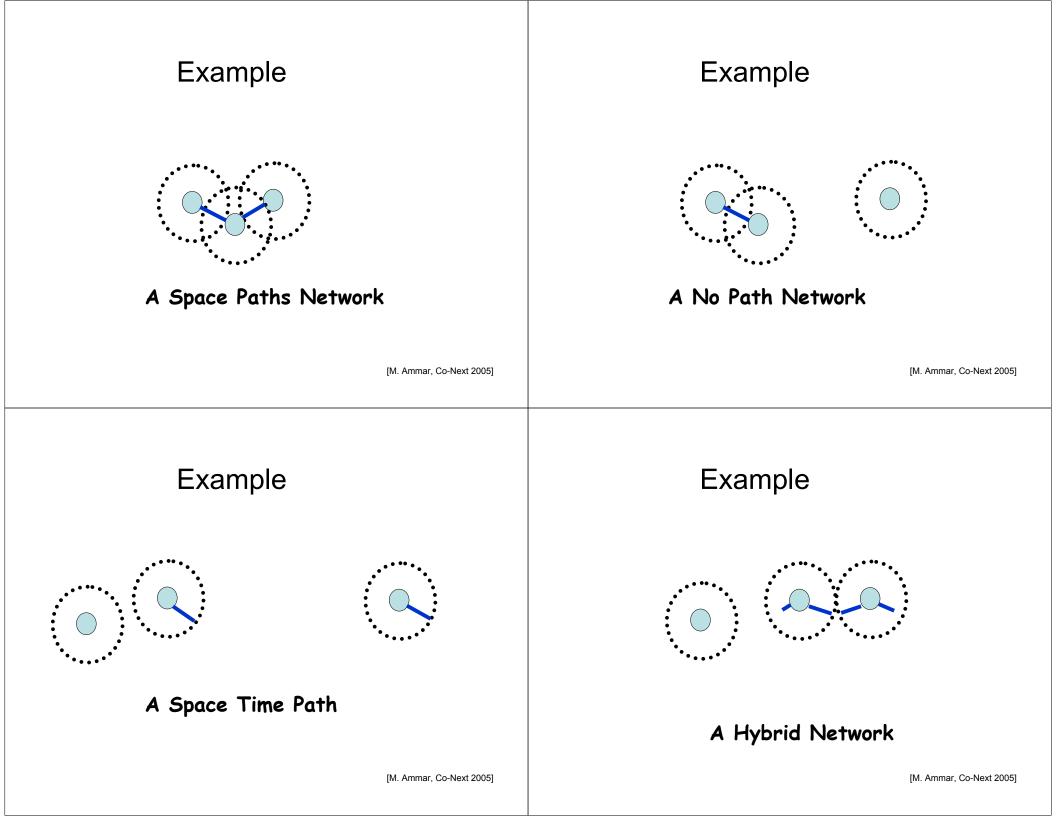
[M. Ammar, Co-Next 2005]

Message Delay

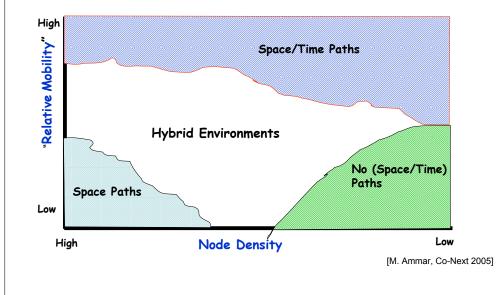
Impact of Node Mobility Pattern

Mobility Model	Scheme	Delivery Rate	Delay (sec)	Energy efficiency (KB/J)
Random Waypoint	NIMF	0.912	3569	300
	FIMF	0.931	3691	181
	ER(w/ ferry)	0.661	2084	14
	ER	0.316	1546	10
Limited Random Waypoint	NIMF	0.699	3896	267
	FIMF	0.850	4091	137
	ER(w/ ferry)	0.211	2851	11
	ER	0.061	2221	6

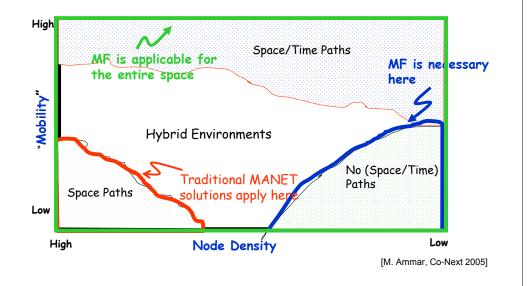
[M. Ammar, Co-Next 2005]


Where Does MF Fit?

- Consider the space of wireless mobile networks
- Two Important Dimensions
 - Relative Mobility
 - Density


Some Terminology

- A Space Path: A multi-hop path where all the links are active at the same time
- A Space/Time Path: A multi-hop path that exists over time
- NOTE: S path is a special case of S/T path
- See


http://www.cc.gatech.edu/fac/Mostafa.Ammar/papers/STroute.ps

The Mobile Wireless Space

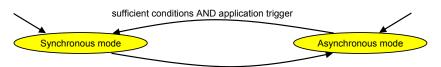
Mapping Solutions to Space

DT-Stream

Can we do video/audio streaming over such networks?

DT-Stream

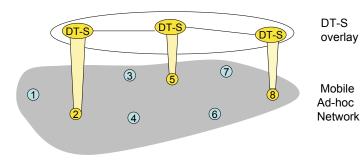
• Pre-project:


- 2007 four Master Students
- Funding:
 - Norwegian Research Council (3PhDs & 1 PostDoc, +)
 - Spanish Governement (1PhD)
- Project participants:
 - University of Oslo
 - University of Oviedo

DT- Stream Goals

- Delay tolerant streaming applications that do not break when network partitions occur, but instead adapt their functionality, and which seamlessly proceed when connectivity is back
- A self-adaptive overlay that caches AV data at selected nodes to increase the resilience and performance of the AV services
- Autonomic resource management to discover, monitor and manage resources through distributed admission control and multi-path routing protocols.

Synchronous and asynchronous mode


Delay Tolerant AV Streaming Applications

insufficient conditions OR application trigger

Overlay

Adaptive Overlay for Delay Tolerant
Streaming

UNIVERSITY OF OSLO Department of Informatics

A Distributed Event Notification Service for Sparse Mobile Ad-hoc Networks

PhD thesis

Katrine Stemland Skjelsvik

January 2008

Rescue and Emergency

Useful to set up a **MANET** for information exchange

Outline

- Motivation
- Design
- Results
- Conclusions and Future Work

Source: applica.no

65

Characteristics of Sparse MANETs

- Wireless
 - Low bandwidth
 - Vulnerable communication
- Sparsely connected
 - Disconnections caused by
 - · Too large area
 - Physical hindrance of signals
 - · Devices turned off to save power
 - Not always a route between a sender and a receiver
- \rightarrow need asynchronous communication

Characteristics of rescue operations

Complicating factors	Enabling Factors		
Hectic environment, short time to make decisions	Preparation a priori		
Dynamic, movement of people, equipment, injured persons, etc	Procedures and rules are defined		
Different organisations present	High incentive for collaboration		
Fragile network	Small to medium-scale		
Scarce resources	Limited time span		

66

Ad-Hoc InfoWare Building Blocks

• DENS

- Support for asynchronous communication
- Knowledge Manager
 - What kind of information is available and where
 - Filter information to avoid information overload

Resource Manager

- Gather and register resources and make this information available
- Network topology prediction
- Security Manager
 - Key management
 - Encryption of data
 - Access Control

69

Background: Event notification Service

- Decouples subscribers of information and publishers of information
- Subscriber: express interest in events in subscriptions
- Publisher: publishes notifications concerning events of interest
- Event notification service (runs on broker nodes):
 - Matching of notifications and subscriptions
 - Routing of notifications and subscriptions
- Subscription language
 - Subject-based
 - subj = health_sensor
 - Content-based
 - subj = health_sensor, pulse_data < 30 && pulse_data > 200

Main contributions

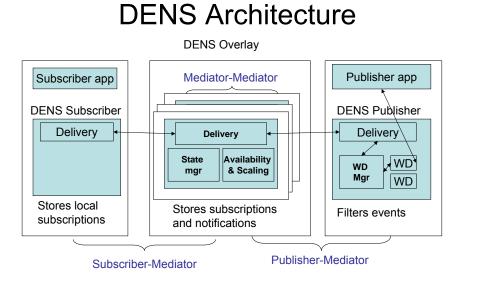
- **Claim 1:** DENS achieves high availability, graceful degradation and fault tolerance through replication
 - Through design choices
- Claim 2: DENS is adaptable to the needs of subscription expressiveness and mobility scenarios
 - Design requirement
- Claim 3: DENS can be implemented and deployed in a sparse MANET
 - Proof-of-concept implementation
- **Claim 4:** DENS is integrated at a conceptual level with the other middleware components

70

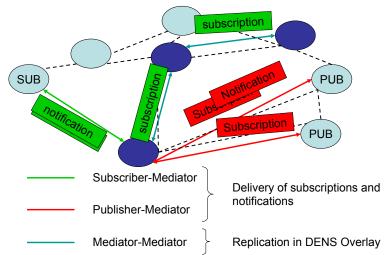
DENS Requirements

From application domain

- Reliable and highly available communication service
- Various degrees of subscription expressiveness needed
- From rescue operation scenarios
 - Should cover different mobility scenarios
- From network characteristics
 - Aware of bandwidth consumption


Related Work

	Sparse MANETs	Support different SL	Adaptable	Source filtering
STEAM	No	-	No	Partly, filtering at source and destination
Q	No	No	No	Content-based routing, publishers advertise what kind of events they have
Probabilistic and deterministic information dissemination. [Costa et al. 2005]	No	No	Probabilistic routing, suitable for dynamic environments	-
Subject-based, no routing protocol. [Baehni et al. 2004]	Yes	No	Suitable for dynamic environments	-
ЕММА	Yes	No	Switches between underlying routing protocol and epidemic routing	-
Message Ferrying	Yes	-	Different configurations for ferries	- 73


High Level Design Decisions

- Flexible wrt subscription language
 - > support various subscription languages by separating delivery of subscriptions and notifications and filtering/matching and use subscription language plug-ins
- Reliable and Available even in the presence of network partitions
 - > replicate DENS information
 - > store & carry & forward
- Adaptable
 - > different degree of replication and different protocols used depending on the mobility scenario
- Resource aware usage of bandwidth
 - > do source filtering

74

DENS Protocols

DENS Overlay Configuration

- Number of mediators
 - Number of clusters/groups and partitions
 - Mobility scenario degree of node density and mobility
- Choose correct Synchronisation Protocol
 - Clustering stability, information from RM
 - Two protocols:
 - DENS Cluster Synchronisation
 - DENS Gossip
- Choose correct configuration of protocol
 - Mobility scenario

77

DENS Cluster Synchronisation

RM reports when there has been a change in the 1. membership and after the routing table has stabilized Mediator-discovery phase: 2. Elected partition-representatives for each old partition floods a mediator-discovery message Other mediators wait for this message Global-synchronisation phase 3. The partition-representative picks one of them to become a coordinator The partition-representatives synchronise DENS information Local-update phase: 4. Partition-representatives send updates to mediators in their old partition

78

DENS Gossip

- Use when unstable partitions and frequent topology changes
- · Mediators synchronise when they meet
- · Stores previous synchronisation meeting
- · Send summaries of newer information
- Request missing data

Subscription language independence: 3 functions

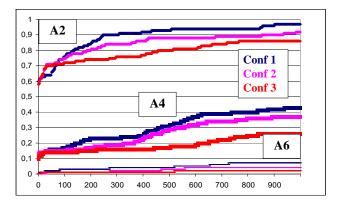
- Parse
 - Returns concept terms used in the subscriptions
- Filter
 - Returns events that matches one or more subscriptions
- Match
 - Returns subscriber IDs of matching subscriptions

Subscriptions and Notifications **Evaluation:** Approach Proof-of-concept implementation of parts of the DENS Sub-ID SL-ID Destination Filter design Tested three DENS Gossip Protocol configurations: - Configuration 1: all notifications all sub · Replicate subscriptions and notifications CQ-Querv Crisp Fuzzy · All mediators try to deliver a subscription predicates predicates All mediators try to deliver a notification - Configuration 2: all notifications one sub · Replicate subscriptions and notifications Only one mediator tries to deliver a subscription · All mediators try to deliver a notification - Configuration 3: one_notifications_one_sub NOT-ID SL-ID Notification · Replicate subscriptions · Only one mediator tries to deliver a subscription · Only one mediator tries to deliver a notification 81 82 **NEMAN** Emulator **Performance Metrics** *#notifications received* Graphical User Interface • Event delivery ratio: \sim *#notifications sent* UDP #messages $\sum \#hops(message_i)$ • Load: Topology Manager TAP 1 TAP 0 TAP 2 DensGenerator DENS DENS $t_{delivered} - t_{sent}$ • Delivery time: OLSR OLSR Taken from [Pužar et al. 05]

83

84

Overview of experiments


- Impact of area size
 - density
 - load
- · Impact of speed
- Impact of number of mediators
- Impact of distribution of mediators

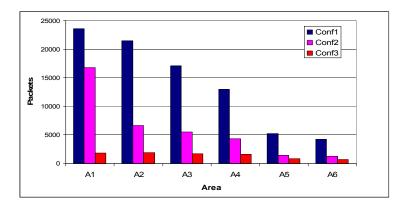
Emulation Parameters

- Number of nodes: 50 ٠ Area: Transmission range: 250 units ٠ Mobility Model: - Random Waypoint - Reference point group mobility Subscriptions and notifications: 10 subscribers, 1 subscription each · All same All different 10 publishers. 1 to 25 notifications each · All same All different
 - - A1: 1000 x 1000
 - A2: 1500 x 1500
 - A3: 2000 x 2000
 - A4: 2500 x 2500
 - A5: 3000 x 3000
 - A6: 3500 x 3500
 - Mediators:
 - [5, 10, 15, 20, 25, 30] mediators
 - Speed:
 - [1, 5, 10, 15] units per second

86

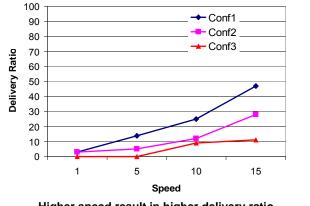
Varying area size (density)

The lower density, the lower delivery ratio


Configuration 1 (all_sub_all_notifications) has best result

A2=1500x1500 A4=2500x2500 A6=3500x3500

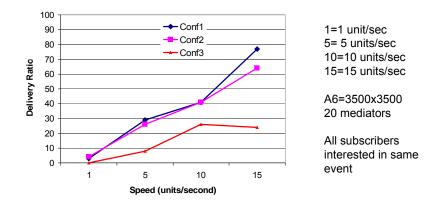
85


20 mediators Speed: 5 units/s

Load, number of packets

The more replication, the higher load

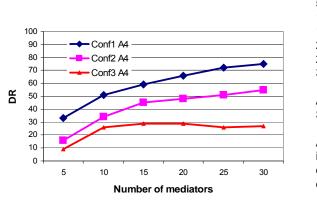
Varying speed I



Higher speed result in higher delivery ratio Configuration 1 has the steepest curve 1=1 unit/sec 5= 5 units/sec 10=10 units/sec 15=15 units/sec

A6=3500x3500 20 mediators

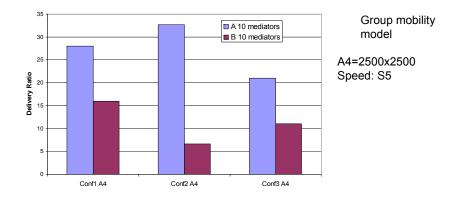
All subscribers interested in different events


Varying speed II

Small difference between Configuration 1 and 2 if high degree of subscription similarity

89

Number of mediators


5 mediators 10 mediators 15 mediators 20 mediators 25 mediators 30 mediators

A6=3500x3500 Speed: 5 units/s

All subscribers interested in different events

Configuration 1 benefits the most from having more mediators

Clustering

Which nodes are mediators has an impact on the delivery ratio when nodes move in groups

90

Conclusion

- **Claim 1:** DENS achieves high availability, graceful degradation and fault tolerance through replication:
 - Using mediators and replications result in higher delivery ratio
- Claim 2: DENS is adaptable to the needs of subscription expressiveness and mobility scenarios
 - Tested three different languages
 - Tested three configurations of the DENS Gossip protocols results show different behaviour
- Claim 3: DENS can be implemented and deployed in a sparse MANET
 - Shown through our proof-of-concept implementation
- Claim 4: DENS is integrated at a conceptual level with the other middleware components
 - Knowledge Manager retrieves information concerning publisher nodes
 - Resource Manager retrieves information concerning network dynamicity
 - Dependent on Security Manager

Additional testing of the DENS Gossip protocol configurations Testing of DENS Cluster Synchronisation

93

•

Implementation

Testing

- Other protocol configurations

- Use real traces from Red Cross in Vienna

– Un-subscribe

Use of test-bed

- Optimisations
 - Use information from routing table
 - Adding DENS information to routing daemon beacons
- Research directions
 - Availability and scaling subcomponent independent scaling of the DENS overlay

Future Work

Handover process

94