Similarity Search for Large-Scale Feature-Rich Data

Qin (Christine) Lv Stony Brook University

Joint work with Kai Li, Moses Charikar, Zhe Wang, William Josephson, Wei Dong Princeton University

Feature-Rich Data

- Rich amounts of information
- Not easily captured by words
- Fuzzy in nature

A picture is worth a thousand words.

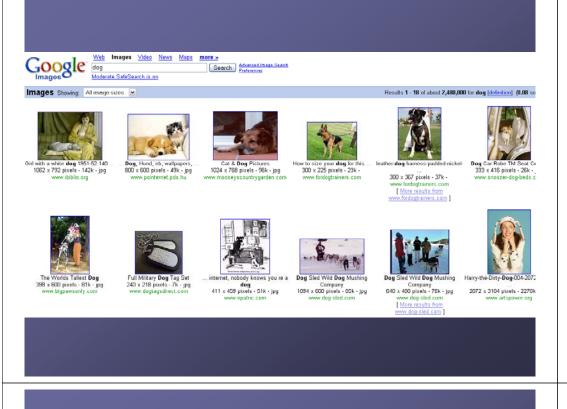
Massive Amounts of Data

- "How much information", 2003 [Leman & Varian]
 - 5 exabytes (10¹⁸) of new information in 2002
 - 92% stored on magnetic media, mostly hard disks
 - 30% growth per year between 1999 and 2002
- Fast increase of non-text data
 - Audio, video, digital photos, scientific data, ...

Flickr	30% growth / month	
YouTube	65,000 videos uploaded / day	
CERN LHC	1.8 GB / second	

Managing and Searching Feature-Rich Data

- Text-based search techniques inadequate
 - Search on filenames or text annotations
 - Manual annotation is difficult for large datasets
 - Annotations are not perfect



Content-Based Similarity Search

COREL dataset (60,000 images)

Managing and Searching Feature-Rich Data

- Text-based search techniques inadequate
 - Search on filenames or text annotations
 - Manual annotation is difficult for large datasets
 - Annotations are not perfect
- Current content-based similarity search
 - Domain efforts focus on feature extraction and similarity measure
 - Limited to small datasets

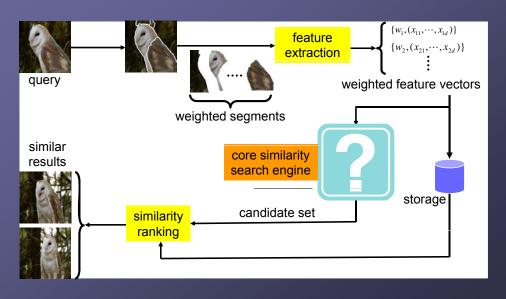
Build efficient similarity search systems for large-scale feature-rich data

Similarity Search Problem

- Given a query, find objects with similar features
 - e.g. color, shape, pose, ...
 - Domain-specific
 - Subjective
- Mathematical definition
 - (set of) feature vectors

 - \bullet Y=(y_1,y_2, \ldots, y_d)
 - e.g. color histogram
 - Distance measure D(X,Y)
 - e.g. Euclidean distance, Manhattan distance, ...

Similarity Query Processing



Main Challenges & Contributions

- Large metadata size
 - Sketch construction for compact representation
 - Order of magnitude space reduction
- Indexing for high-dimensional similarity search
 - Multi-probe LSH indexing
 - High-efficiency, order of magnitude space reduction
- Complex distance measure
 - Multi-feature filtering for fast query processing
 - Order of magnitude speedup
- Ferret toolkit
 - General-purpose, easy construction, 6 systems built

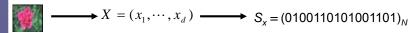
Outline

- Motivations
- Sketch construction
 - compact metadata representation
- Multi-probe LSH indexing
 - high-dimensional similarity search
- Ferret toolkit
- Conclusions & future work

Sketch

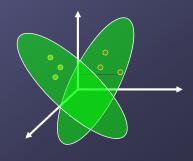
- Compact data representation
- Estimates certain properties of original data
- Previous work in the theory community
 - Set membership [Bloom'70]
 - Set similarity [BGMZ'97, BCMF'98]
 - Frequency moments [AMS'99]
 - String edit distance [Batu et al. '03]
 - EMD on points in Euclidean space [Indyk & Thaper '03]
 -

Sketch for Similarity Search





- ◆ High-dim feature vec→ compact bit vec
- Sketch distance approximates feature vector distance



[Charikar, STOC'02]

Sketch Construction

- d-dimensional feature vector → BxH bit vector
 - Mapping L₁ distance to Hamming distance

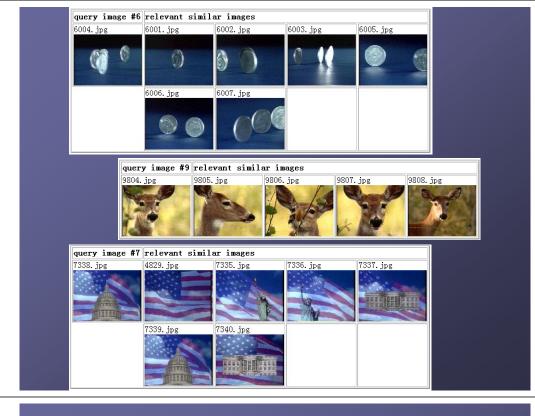
 $\Pr[b_x \neq b_y] = \Pr[t \text{ falls within } x_i \text{ and } y_i] = \frac{|x_i - y_i|}{h_i - l_i}$

Performance Evaluation

- Tradeoff between search quality and sketch size?
- How much space savings using sketches?

Evaluation Methodology

- Benchmarks
 - VARY image: 10,000 images, 14-d, 32 sets
 - TIMIT audio: 6,300 sentences, 192-d, 450 sets
 - PSB shape: 1,814 3D models, 544-d, 92 sets



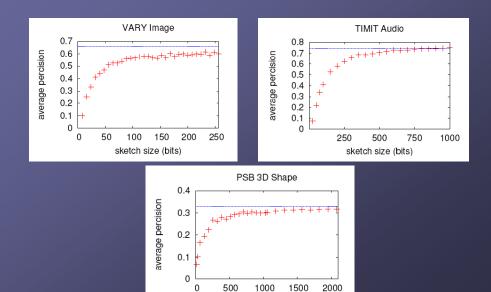
Evaluation Methodology

- Search quality measures
 - S: similarity set
 - R: retrieved results
 - Precision: $|S \cap R|/|R|$
 - Recall: |S ∩ R | / |S |

average precision =
$$\frac{1}{|S|} \sum_{i=1}^{|S|} \frac{i}{rank_i}$$

- e.g. S = { a, c, g }
 - R1 = { a, b, c, d, e, f }
 - R2 = { d, e, b, a, f, c}

Search Quality vs. Sketch Size



sketch size (bits)

Space Savings using Sketches

Dataset	#Dimensions	Feature vec size (bits)	Sketch size (bits)	Space savings
VARY image	14	448	96	4.7x
TIMIT audio	192	6,144	600	10.2x
3D shape model	544	17,408	800	21.8x

Order of magnitude space reduction using sketches

Outline

- Motivations
- Sketch construction
 - compact metadata representation
- Multi-probe LSH indexing
 - high-dimensional similarity search
- Ferret toolkit
- Conclusions & future work

Indexing for Similarity Search

- Traditional indexing techniques
 - R-tree [Gut'84], R*-tree [BKSS'90], X-tree [BKK'96],
 SR-tree [KS'97], ...
 - "curse of dimensionality"
 - Linear scan outperforms when d > 10 [WSB'98]
- Indexing for high-dimensional similarity search

Image SIFT local features	128 dimensions
Audio MFCC features	192 dimensions
3D Shape SHD features	544 dimensions

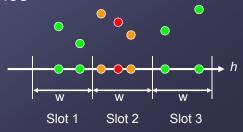
LSH: Locality Sensitive Hashing

- [Indyk & Motwani, STOC'98]
- Locality sensitive hashing

Pr[h(u) = h(v)] is strictly decreasing in d(u, v)

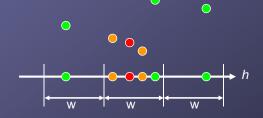
- i.e. closer objects have higher collision probability
- LSH for Euclidean distance
 - w: slot width

1 ()	$a \cdot v + b$
$h_{a,b}(v) =$	$\begin{bmatrix} - & - \\ w & \end{bmatrix}$

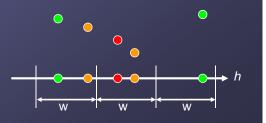


LSH: Main Issues

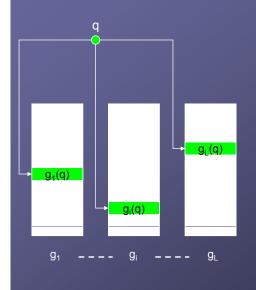
- False positive
 - Far away objects fall into same slot



- False negative
 - Similar objects fall into different slot



Basic LSH Indexing



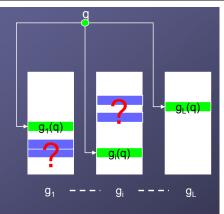
- [IM98, GIM99, DIIM04]
- M hash functions/table $g_i(v) = (h_{i,l}(v), ..., h_{i,M}(v))$
- L hash tables

$$G = \{g_1, ..., g_L\}$$

- Issues:
 - Large number of tables
 - L > 100 in [GIM99]
 - L > 500 in [Buhler01]

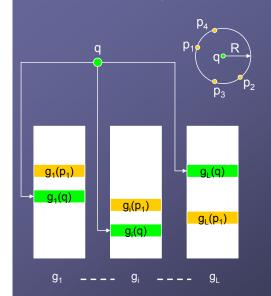
Impractical for large datasets

Use fewer hash tables



- Approach
 - Probe multiple buckets in each hash table
- Which buckets should we probe?

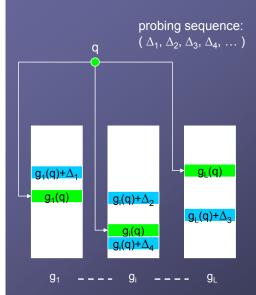
Entropy-Based LSH Indexing



- [Panigrahy, SODA'06]
- Randomly perturb q at distance R
- Check hash buckets of perturbed points
- Issues:
 - Difficult to choose R
 - Duplicate buckets

Inefficient probing

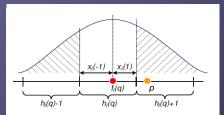
Multi-Probe LSH Indexing



- A carefully derived probing sequence
- Probe directly on hash values
- Pros
 - Fast probing sequence generation
 - No duplicate buckets
 - More effective in finding similar objects

Query-Directed Probing

- Hashed position within slot matters!
 - If q is closer to the right boundary
 - Similar objects more likely in the right slot than in the left slot



- Query-directed probing
 - Estimate success probability based on $x_i(-1)$ and $x_i(1)$
 - Probe buckets that have high success probability

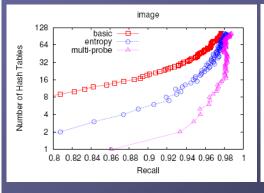
Evaluation Methodology

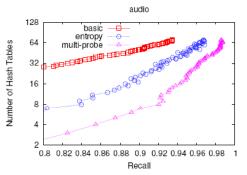
Dataset	#objects	#dimensions	
Web images	1.3 million	64	
Switchboard audio	2.6 million	192	

- Benchmarks
 - 100 random queries, top K results
- Evaluation metrics
 - Search quality: recall
 - Search speed: query latency
 - Space usage: #hash tables

recall = $|I \cap R| / |I|$

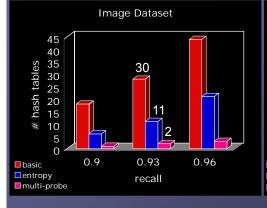
Multi-Probe vs. Basic vs. Entropy

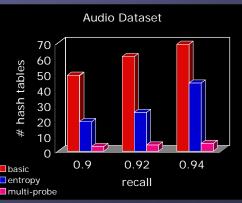




Multi-probe LSH achieves higher recall with fewer hash tables

Space Savings of Multi-Probe LSH





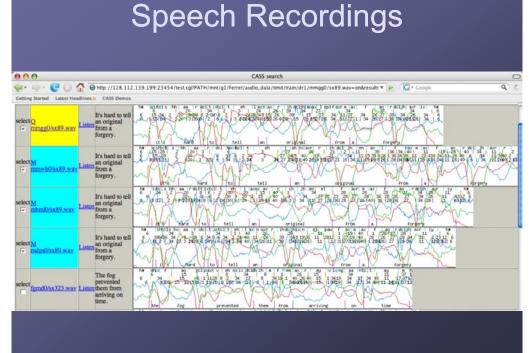
14x - 18x fewer tables than basic LSH 5x - 8x fewer tables than entropy LSH

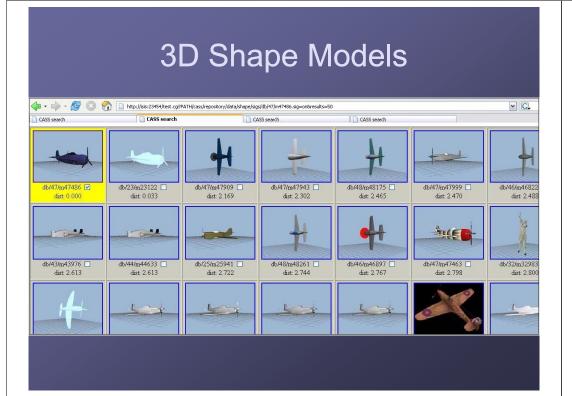
Outline

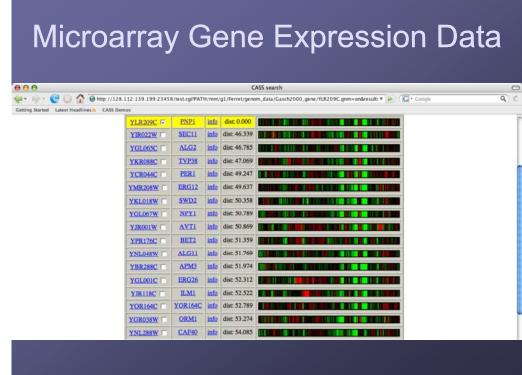
- Motivations
- Sketch construction
 - compact metadata representation
- Multi-probe LSH indexing
 - high-dimensional similarity search
- Ferret toolkit
- Conclusions & future work

Ferret Toolkit

- General-purpose toolkit for building efficient similarity search systems
- Plug-ins of domain-specific feature extraction and distance measure
- Easy construction for different data types







Conclusions

- Building efficient similarity search systems for large-scale feature-rich data
- Sketch construction
 - Compact metadata representation
 - Order of magnitude space reduction
- Multi-probe LSH indexing
 - Efficient similarity search in high dimensions
 - Order of magnitude space reduction
- Ferret toolkit
 - Built search systems for 6 different data types