
Worms & Botnets
Otto J. Anshus

UiT & UiO

Structure

• THE Classic Worm paper

• Botnets

Worm Programs - Early Experience with
a Distributed Computation

Shoch and Hupp
Xerox Palo Alto Research Center

Communicatons of the ACM

1982

What is the paper about
• MULTI MACHINE PROGRAMS (!): Programs which can copy (replicate) themselves from

one computer to others

• Experiences

• How they did it (model, implementation)

• The problems encountered

• What they learned

• Feasibility experiment and prototyping

• What was wrong with the world?

• A worm had not been demonstrated before, and published about (ditto for a
distributed computation)

• They had a concept, needed to learn more: so they did it.

• MADE POSSIBLE BY THE COMMODITY DEVELOPMENT of computers (microprocessor,
RAM, disk, network)

Inspired by “...father and mother of all tapeworms...”

• 1975: The Shockwave Rider by John Brunner“

• “Tapeworm” program running loose through
the network

• Breeds by itself

• Moves to places

• Immortal

• Consume resources

Inspired by “...father and mother of all tapeworms...”

• 1975: The Shockwave Rider by John Brunner“

• “Tapeworm” program running loose through
the network

• Breeds by itself

• Moves to places

• Immortal

• Consume resources

Side track

• Page 172, third column: “..once called distributed computing.
Unfortunately, that particular phrase has already been co-opted by
those who market fairly ordinary terminal systems; thus, we prefer
to characterize these as programs which span machine boundaries or

distributed computations”

The Blob
• Science Fiction Movie, 1950s: Lifeform growing by absorbing

others

• Computational model based on this idea :)

• expand when cycles become available

• need migration of code and data

• retreat when users start using their workstations

• need migration of state and results

• Also called VAMPIRE PROGRAMS

• hiding at day, fly by night

• Check out a 1980’s project: EMERALD (U. of Washington)

Prologue
 John Shoch and Jon Hupp @ Xerox Palo Alto Research

Center, 1982
 Homogeneous Computing Environment
 100 Alto computers personal use, also see
 Set of servers: file servers, printer-servers, boot-

servers
 Ethernet Local Area Network
 No (TCP/)IP, they used PUP (Xerox Parc’s “IP”)
 Programs written in BCPL for Alto.
 Bravo WYSIWYG text editor, Laurel Electronic mail

program, Press Document printing program, and
Games

 Single user, no user level multi-programming
 “Idle computer”==running memory

http://en.wikipedia.org/wiki/Xerox_Alto
http://en.wikipedia.org/wiki/Xerox_Alto
http://www.guidebookgallery.org/articles/thexeroxaltocomputer
http://www.guidebookgallery.org/articles/thexeroxaltocomputer
http://en.wikipedia.org/wiki/PARC_Universal_Packet
http://en.wikipedia.org/wiki/PARC_Universal_Packet
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/WYSIWYG
http://en.wikipedia.org/wiki/WYSIWYG
http://en.wikipedia.org/wiki/Xerox_Star
http://en.wikipedia.org/wiki/Xerox_Star

Alto Computer

• http://en.wikipedia.org/wiki/
Xerox_Alto

• Butler Lampson

• Xerox Parc 1973

• First computer to use

• desktop metaphor

• GUI

• Not commercial, a few thousand used

http://en.wikipedia.org/wiki/Xerox_Alto
http://en.wikipedia.org/wiki/Xerox_Alto
http://en.wikipedia.org/wiki/Xerox_Alto
http://en.wikipedia.org/wiki/Xerox_Alto
http://www.digibarn.com/friends/butler-lampson/index.html
http://www.digibarn.com/friends/butler-lampson/index.html

Worm

 Motivation:
 To use idle machines (resources) effectively

 Definition:
 “A computation that lives on one or more

machines. Programs on individual machines are
segments of a worm.”

 A worm program initiates on one machine, reach out
and find unused or idle machines, and grow to
encompass these resources

 Vampire programs

Worm

Segment Init Data

Worm Init Main program

Schematic of Worm Programs

 Simplest case: Each segment carries
a number indicating total segments
(== machines) in a worm

 If a segment dies, others find an idle
machine, initialize and add it to the
worm
 => need comm. between

segments “all the time”
 => worm moves

 Worm is a mechanism
(infrastructure) used to maintain
segments

 User programs built on top of this
mechanism

Right :)

• Do not use the local disk (file servers OK)

• because the computer may not have a disk

• because it is antisocial to use others disks

• Users must have confidence in that the worm will
behave

• “we have been able to assure users that there is
not even a disk driver included within any of the
worm programs””

Mechanisms

• Starting a worm segment

• Initialization code at the start

• “Must grow!”: Locating idle machines

• Simple Q: “Are you free?”

• Memdiagnostics answers YEPP

• But which addresses should each worm SEGMENT use?

• repeat try own++ until YEPP then copy segment to new computer break
loop %got you, new host has a segment. It will try to spread, I will not

How to get the segment copied
to new host - and running

• Can not remotely take control over an Alto and start a program, let alone
force it to restart it over the network

• an Alto must voluntarily reboot from local or remote disk

• Booting an idle machine

• Remote segment asks new host, please, to boot through network
from a given location
• the boot code is now the segment itself!

• The Alto now runs the Worm segment
• single program + OS code

Mechanisms
• Intra-worm communication (remember: they need to know if a segment dies)

• Ethernet supported multicast would have been nice - they did not have this - and it
would not have worked for a WAN anyhow

• Magic to achieve multi-cast support

• Pseudo-multicast: each worm is given a unique physical host address to use. All
“participants” (computers) rename themselves to this address

• NB: worms can not share computers, must partition the computers amongst the
worms, coordination is a drag :)

• Brute force multicast: Periodically all segments send and get state from the others

• n(n-1) “packets” per update

• no problem, many small worms (3-6 will secure survivability :))

• If a segment dies: will be discovered, the rest agrees on whom of them will locate a
new machine and copy itself to it

Segment finished

• Releasing a machine: Upon finishing, segment invokes network boot
procedure to reload memory diagnostic programs

• What if machine crash while running the segment or during reboot?

• well, then it has crashed :)

• no support for a reboot initiated from network

• must walk up to it and cycle power

Segment to Segment
• Segments communicate to keep the worm alive,

maintaining the set number of segments

• Alive?

• Heartbeat

• Ping

• Agree on which segment should try to invade a
new host if the number of segments are too low
(or kill if too many)

One Big Worm
vs.

Cooperating Smaller Worms

• Almost as an aside they mention “cooperating
smaller worms”, this was in 1982

• CSP - communicating sequential processes,
Hoare, 1978

• But think about the implications: s2s vs. w2w
interaction

• P2P - peer to peer

http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/Peer-to-peer

Oops

No, Mr. Sullivan, we can't stop it! There's never been a worm
with that tough a head or that long a tail! It's building itself,
don't you understand? Already it's passed a billion bits and it's
still growing. It's the exact inverse of a phage--whatever it
takes in, it adds to itself instead of wiping... Yes, sir! I'm quite
aware that a worm of that type is theoretically impossible!

But the fact stands, he's done it; and now it's so goddamn
comprehensive that it can't be killed. Not short of
demolishing the net!

--John Brunner, The Shockwave Rider

Out-of-control Worms
 Challenge: Controlling worm growth while maintaining stable behaviour

 Copy of program corrupted during migration: after a segment was downloaded, it
would not behave (initialize) correctly, and crash => machine dead until cycle power.
Somewhere the Worm concluded: I need to get up to my correct number of
segments => all machines will eventually crash
 The authors had designed in a way to kill all segments: Inject a special packet into

network: HALT, it said to all segments.
 NB: of course, all segments had to have code to read and react to this

packet. COULD have been corrupted as well of course...
 High strung worm: very sensitive, no attempts to be robust: panics easily.
 Low strung worms: Worms can die out because the segments are too relaxed in

copying themselves to new computers
 Unstable worm: grows rapidly due to lack of coherence between segments

(inconsistent state, partion of network)
 Real challenge: Unlike viruses and trojans, worms have caused greater havoc on Internet

 November 2, 1988: Morris worm
 July 19, 2001: Code-Red (CRv2)

 359,000 computers infected in 14 hours
 $2.6 billion

Controlling the worms

• Exchange of more information

• Use of checks and error detection

• Self-destruction of segments thinking they
themselves are the problem

• hmm, then the worm can die by suicide

• Worm watcher: keep an eye on the worms,
keep them down or halt, record state

Applications
• No app specific comm. between segments

• Existential worm: Stay alive, print(Greetings from Worm Segment i)

• Billboard worm: Displays an image on all machines with a segment

• App. specific comm between segments

• Alarm clock worm: A program on some Alto provided a user interface: set alarm. It then
contacted a segment of the Alarm worm with the new alarm info. This segment propagated its
state to all other segments. Alarm clock will survive machine crashes! CONSISTENCY ISSUES.

• how would the user program find a segment? (use a port read by all segments, listen on the
Ethernet, or more modern approaches)

• Centralized control by Master node

• Multimachine animation using a worm: segments used to produce frames, master displays

• master poll slaves-slaves return a frame-master send new objects to compute to segments

• can use one larger worm or several smaller (HIERARCHY)

• Diagnostic worm for the Ethernet

Concepts still being
investigated

• self-replication

• migration

• distributed coordination

• control

• defenses (against malicious programs)

Epilogue

 One of the earliest experiments in distributed computing and
process migration

 Valuable experiences in
 Distributed computing
 Moving from machine to machine

 Experiments and experiences in Worms have been quite useful
to develop support of process migration in later systems
 Systems to use idle workstations or distribute load in

networked environment. E.g. Butler, NEST.
 Control needed because problems will happen

http://en.wikipedia.org/wiki/Process_migration
http://en.wikipedia.org/wiki/Process_migration

