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Abstract: 

This document is the second version of the ANA Blueprint Architecture. It describes the 

design and communication model of the Autonomic Network Architecture (ANA) 

developed within the EU FP6 IST Project 27489.  

The Blueprint includes a definition of the basic abstractions, core concepts and 

communication paradigms of ANA, and it also defines the abstract interfaces that an 

implementation of a network node must provide in order to support the ANA 

architectural concepts. 
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Executive Summary 

The goal of the ANA project is to explore novel ways of designing and building networks 

beyond legacy Internet technology. The ultimate goal is to design and develop a novel 

network architecture that can demonstrate the feasibility and properties of autonomic 

networking. As specified in the initial description of work of the project, the goal of the 

project is to develop an innovative network architecture that facilitates the development 

of autonomic networking features such as self-configuration, self-optimization, self-

monitoring, self-management, self-repair, and self-protection. 

Because autonomic networking is a relatively new research area and there does not yet 

exist any autonomic network architecture, the ANA project is doing significant 

pioneering work on this wide and challenging research topic. 

Designing a network architecture implies identifying and specifying the design principles 

of the system being developed. The architecture hence defines the atomic functions and 

entities that compose the network and specifies the interactions that occur between these 

various building blocks.  

As the second version of the ANA architectural Blueprint specification, this document 

describes the updated reference model of the ANA autonomic network architecture. It 
includes a definition of the basic abstractions and concepts of the ANA architecture and 

the communication paradigms. The document also includes the abstract interfaces that an 

implementation of a network node must provide in order to support the ANA 

architectural concepts. 
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1 INTRODUCTION  

This document is the second version of the ANA Blueprint. It is based on the first 

versions (i.e. 1.0 and 1.1) of the document which were respectively produced at months 

M12 and M24 of the project, but it also contains new additions inline with the 

development of the project. Moreover, some of the content that appeared in the previous 

versions has been removed since it is now described in more detail in dedicated 

deliverables on those topics. Version 2.0 of the Blueprint thus focuses only on the core 

design specifications of ANA. 

This update of the ANA Blueprint also reflects the lessons learned from the ongoing 

prototyping efforts of the ANA core system during the third year (2008) of the project. 

As the development of the ANA software is still ongoing and maturing, a final Blueprint 

document will be released at the end of 2009 (M48), which will reflect all the experiences 

gained during the ANA development from 2006 to 2009. 

As for the previous versions, this version of the Blueprint describes the current reference 

model of the ANA autonomic network architecture. This includes a definition of the basic 

abstractions and concepts of the ANA architecture along with the main communication 

paradigms and mechanisms. The Blueprint also includes the abstract interfaces that an 

implementation of a network node must provide in order to support the ANA 

architectural concepts. 

1.1 Motivation and Aims 

This section recaps the main drivers behind the Autonomic Network Architecture (ANA) 

and its high-level aims. 

The overall objective is to develop a novel network architecture and to populate it with 

the functionality needed to demonstrate the feasibility of autonomic networking. In order 

to avoid the same shortcomings of network architectures developed in the past, the 

guiding principles behind the architectural work in ANA are achieving maximum 

flexibility and providing support for functional scaling by design.  

The former indicates that the project members do not envision a “one-size-fits-all” 

network architecture for the various different types of networking scenarios (e.g., 

Internet, Sensor Networks, Mobile Ad hoc Networks, Peer-to-peer Networks). Instead, 

the aim of ANA is to provide an architectural framework that enables the co-existence 

and interworking between different “networking styles”.   

Functional scaling means that a network is able to extend both horizontally (more 

functionality) as well as vertically (different ways of integrating abundant functionality). 

New networking functions must be integrated into the “core machinery” of the system, 

and not on top as “patches”; otherwise we do not have scaling of functionality, only 



FP6-IST-27489 ANA Project - Deliverable D1.9 – ANA Blueprint - Second Version Page 2 

function accumulation on top of an ossified network core. In the context of ANA, the 

ability of functional scaling is considered vital, as this provides the basis to allow 

dynamic integration of new, autonomic functionalities, as they are developed.  

The Internet and the OSI reference model are examples of a functionally non-scalable 

approach: both are based on the premise of factoring out functionality with a pre-defined 

and static model. The “canonical set” of protocols collected in the Internet-Suite has done 

a good job so far; however the limitations of this one-size-fits-all approach have become 

visible. This is not surprising, since the networking layer of the Internet has not aimed at 

functional scaling by design: it has evolved through a ‘patchwork’ style. Additions were 

made in a stealth-like way and have not dared to change the core of IP networking. The 

main examples are the introduction of the hidden routing hierarchy with AS, CIDR or 

MPLS, as well as other less successful initiatives such as RSVP, multicast, mobile IP and 

MANET. 

As a result, the objective of the ANA project is to provide an architectural framework – a 

“meta architecture” – that allows the accommodation of and interworking between the 

full range of networks, ranging from small scale Personal Area Networks, through 

(Mobile) Ad hoc Networks and special purpose networks such as Sensor Networks, to 

global scale networks, in particular the Internet.  

An important step towards such a “meta architecture” is to design a framework that is 

able to host different types of networks. As a result, ANA encompasses the concept of 

compartments as a key abstraction that allows co-existence and interworking of different 

types of network through a minimum generic interface. 

Furthermore, the operation of different types of compartment must be analysed in order 

to identify the fundamental building blocks of the abstraction. The decomposition of 

compartments into the core functions helps to understand how the necessary flexibility 

and functional scalability to provide autonomicity can be achieved through 

compartments.  

1.2 Scope of Deliverable 

The Blueprint document focuses on the overall architectural aspects of ANA. As such, it 

defines the basic abstractions and building blocks of ANA and presents its basic 

operation and mechanisms. Therefore, it does not capture the details of the many 

developments going on in other areas of the project, such as intra and inter-compartment 

routing, service discovery, functional composition, monitoring, etc. At the end of 2008, 

the outcomes of these activities are described in the following deliverables: 

• D1.11: Second public release of the core ANA software 

• D2.9: Design and implementation of an intra-compartment routing scheme 

• D2.10: Implementation of inter-compartment communication schemes 

• D2.12: Integration of the functional composition framework and evaluation 

• D2.13: Service discovery phases: conceptual design and evaluation 
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• D2.14: Implementation of self-association and self-organization mechanisms 

• D2.15: Implementation and integration of the proof-of-concept overlay streaming 

compartment 

• D2.16: Final design, evaluation and prototype implementation of content-based 

routing mechanism 

• D3.7: The monitoring part of the ANA architecture - version 2 

• D3.8: Self-optimization mechanisms 

• D3.9: Implementation of selected components of the failure detection and fault 

management 

• D3.10: Measurement-based resilience mechanisms   

• D4.5: Extended integrated test-bed infrastructure 

• D4.7: Description of VoD demonstrator design and composition 

• D4.8: Integration guidelines for the final ANA distribution 

• D4.9: Test environment and guidelines for ANA application and functional block 

tests 

1.3 Structure of the document 

This document is organized as follows. Section 2 describes the core abstractions and 

basic communication paradigms of the ANA network architecture. Section 3 introduces 

the ANA Compartment API which is used to wrap different “network types” with a 

generic interface. Section 4 provides details on the core ANA concept of compartment 

and describes how this is used at the node-level and at the scale of networks. Section 5 

describes the ANA Node, its basic components and operation as well as the components 

that an implementation should support. Finally, Section 6 concludes the document. 

1.4 Abbreviations 

ANA  Autonomic Network Architecture 

API  Application Programming Interface 

BP  Bootstrap Protocol 

FB  Functional Block 

IC  Information Channel 

IDP  Information Dispatch Point 

IDT  Information Dispatch Table 

MC  MINMEX Controller 
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MINMEX Minimal INfrastructure for Maximal EXtensibility 
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2  CORE ARCHITECTURAL ABSTRACTIONS 

This section introduces the basic abstractions of ANA: the functional block (FB), the 

information dispatch point (IDP), the compartment, and the information channel (IC). 

2.1 Basic abstractions 

2.1.1 Functional Block (FB) 

In ANA, any protocol entity generating, consuming, processing and forwarding 

information is abstracted as a functional block (FB). For example, an IP stack, a TCP 

module, but also an encryption function or a network monitoring module can be 

abstracted as a functional block. In contrast to OSI’s protocol entities [1], functional 

blocks are not restricted to being abstractions of network protocols and the functionality 

they provide can range from a full monolithic network stack down to a small entity that 

computes checksums (like elements in Click [2]). 

The fact that a FB can represent the whole range from an individual processing function 

to a whole network stack makes this abstraction very useful. It permits the capture and 

abstraction of many different flavours of communication entities and types, and enables 

them to interact with other entities inside ANA under a generic form. 

In all the figures of all the documents describing ANA and its components, a functional 

block (FB) is represented by a (red) square as shown in Figure 2-1. 

 

a functional block (FB)

 

Figure 2-1. Functional Block 

 

2.1.2 Information Dispatch Point (IDP) 

The fundamental concept introduced by ANA and around which the core architecture 

machinery is designed is the information dispatch point (IDP). IDPs are inspired by 

network pointers [3] and by network indirection mechanisms [4], and they are somehow 

similar to file descriptors in Unix systems. Basically inside an ANA node, a functional 

block (FB) is always accessed via one or multiple IDPs attached to it: in other words, all 

interactions are carried out via an indirection level built into the network architecture. In 

the same way as Unix systems enforce access to all system components (e.g. devices, 
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sockets, files) via file descriptors, ANA mandates that all functional blocks are accessed 

via IDPs. However unlike file descriptors and sockets, the binding of an IDP (i.e. the FB 

to which it is attached) is dynamic and can change over time (e.g. if a “network stack” is 

reconfigured). The bindings between IDPs and FBs are stored in the core forwarding 

table of the ANA Node where each IDP is identified by a node-local label (e.g. a 32-bit 

unsigned integer value). As detailed later, each IDP also maintains some dynamic 

information such as the FB to which it is attached, state to be passed to the FB, a lifetime 

counter, and some status information. 

The advantage of IDPs is two-fold: first, they act as generic communication pivots 

between the various functional blocks running inside an ANA node and, second, they 

provide the required flexibility allowing for the re-organization of communication paths. 

For packet forwarding, IDPs permit the implementation of forwarding tables which are 

fully decoupled from addresses and names: i.e., in ANA the next hop “entity” (local or 

remote) is always identified by an IDP. This permits the easy addition and use of new 

networking technology and protocols as long as they export their communication services 

as IDPs. 

In all the figures of all the documents describing ANA and its components, an 

information dispatch point (IDP) is represented by a black dot as shown below. When an 

IDP is bound to a functional block (FB), the binding is represented by a line connecting 

the IDP to the FB. Essentially, this means that any data sent to, or any action applied to 

an IDP is really received or captured by the functional block it is attached to. ANA 

strictly enforces this level of indirection: that is, it is not possible to interact directly with 

a functional block. All interactions are always handled via an IDP. In Figure 2-2, the 

action of sending to or acting on an IDP is drawn as an arrow. 

 

an information dispatch point (IDP)

an IDP bound to a

functional block (FB)

a FB (left) sending data to 

another FB (right) via an IDP
 

Figure 2-2. Information Dispatch Points 

As shown in the Figure 2-3, a given functional block can have multiple IDPs attached to 

it. Inside the FB, each IDP is typically linked with a specific action, with potentially some 

specific state attached to it. For example in the figure, the IDP labelled a is “bound” to 

the function hash_MD5() while the IDP b is attached to  the function hash_SHA() 
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two IDPs bound to a

functional block (FB)

a

b

Inside the FB:

IDP 'a' refers to function hash_MD5( )

IDP 'b' refers to function hash_SHA( )
 

Figure 2-3. IDPs and bindings inside functional blocks 

Different IDPs attached to the same functional block can also be bound to the same 

function but with different state attached to them. For example in Figure 2-4, the IDP 

labelled c is bound to the function sendto() with state (argument) 1.2.3.4 while the 

IDP d is attached to the same function with state 9.8.7.6. 

two IDPs bound to a

functional block (FB)

c

d

Inside the FB:

IDP 'c' refers to function sendto(1.2.3.4)

IDP 'd' refers to function sendto(9.8.7.6)
 

Figure 2-4. IDPs and bindings inside functional blocks 

 

2.2 Compartment and Information Channel (IC) 

2.2.1  Background and Motivation  

Recent research has led to the conclusion that today’s networks have to deal with a 

growing diversity of commercial, social and governmental interests that have led to 

increasingly conflicting requirements among the competing stakeholders. Clark et al. 

refer to this development as “tussles in cyberspace” [5]. A pragmatic way to resolve those 

tussles is to divide the network into different realms [6] or turfs [7] that isolate the 

conflicting or competing interests. 

In order to abstract the many notions of network realms and domains, ANA introduces 

the key concept of compartment. With respect to communication networks, the concept 

of compartment is similar to the notion of context as proposed in Plutarch [8] where “a 
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context describes a region of the network that is homogeneous in some regard with 

respect to addresses, packet formats, transport protocols, naming services, etc.” 

The compartment abstraction, as one of the fundamental concepts of ANA, enables ANA 

to “encapsulate” (or “wrap”) today’s networks into a generic abstraction. Compartments 

indeed offer a set of generic “wrapper primitives” that allows accommodation of both 

legacy network technologies and new communication paradigms within ANA in a 

generic manner. Since support for backwards compatibility and inter-working with 

already deployed networks is a key requirement for any new network architecture, some 

architectural compromises (e.g. number of primitives and arguments of the API) are 

typically made to achieve this. However, as the compartment abstraction permits hiding 

the internals and specifics of individual network technologies, this concept enables inter-

working among heterogeneous compartments in a generic manner. 

2.2.2 ANA Compartment: Definition  

Prior to defining compartments and their properties, it is important to note that the notion 

of compartment does not necessarily involve multiple nodes: a compartment can indeed 

involve a single node only, for example to provide node-local communications between 

software entities. Hence in the rest of this document, we refer to network compartment 

when multiple nodes are involved, while we will refer to the node compartment to 

describe a specific construct of ANA allowing access to node-local software entities via 

the set of compartment generic primitives. 

In ANA, compartments implement the operational rules and administrative policies for a 

given communication context. The boundaries of a communication context, and hence the 

compartment boundaries, are based on technological and/or administrative boundaries. 

For example, compartment boundaries can be defined by a certain type of network 

technology (e.g., a specific wireless access network) or based on a particular protocol 

and/or addressing space (e.g., an IPv4 or and IPv6 network), but also based on a policy 

domain (e.g., a national health network that requires a highly secure boundary). ANA 

anticipates that many compartments co-exist and that compartments are able to interwork 

on various levels. 

The complexity and details of the internal operation are left to each compartment. That is, 

compartments are free to choose internally the types of addressing, naming, routing, 

networking mechanisms, protocols, packet formats, etc. For example in ANA, typical 

network compartments are: an Ethernet segment, the public IPv4 Internet, a private IPv4 

subnet, the DNS, peer-to-peer systems like Skype, and distributed web caching networks 

like Akamai. 

Typically, the communicating entities inside a compartment are represented in the ANA 

architecture through functional blocks (FBs). They implement the functionality that is 

required to communicate within the compartment. As such, the FBs can also be regarded 

as the processing elements or functions hosted by an ANA node that constitute the 

“compartment stack”. 
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2.2.3 Information Channel (IC) 

Typically in each network compartment, a distributed set of functional blocks 

collaborates in order to provide communication services to other compartments and 

applications. Whatever the nature of the communication service (unicast, multicast, 

datagram, reliable, etc.), it is abstracted by an information channel (IC) which (as 

anything else in ANA) is accessed via an IDP. While such an IDP is really bound to a 

functional block belonging to the network compartment, the abstraction provided is an 

information channel to some remote entity or entities. Note that the end-point of an 

information channel is not necessarily a network node: it can be a distributed set of nodes 

or servers, a software module, a routing system, etc. This rather abstract definition allows 

us to capture and abstract many different flavours of communication forms.  

Information Channels (ICs) can be of either a physical or logical nature. Examples of 

physical ICs are a cable, a radio medium, or memory. A logical (or virtual) IC can 

represent a chain of packet processing elements and further ICs. The IC abstraction 

captures various types of communication channels, ranging from point-to-point links or 

connections, over multicast or broadcast trees to special types of channels such as anycast 

or concast trees. Figure 2-5 illustrates a number of different types of IC. Note that 

broadcast is considered a special case of multicast. 

 

unicast multicast anycast concastunicast multicast anycast concast
 

Figure 2-5. Different Types of Information Channel (IC)  

 

The following example (see Figure 2-6) shows how FBs, IDPs and ICs interact in order 

to enable communication within a compartment. The FBs in this example perform some 

type of processing (e.g., add protocol header, perform rate control, etc.) on the data, 

before it is transmitted to an entity in another ANA Node via the IC u → v. 

The IC u → v in this example represents the service that is provided by some underlying 

system (e.g., the operating system providing a link and physical layer functionality). 

Since this IC is not provided by the network compartment considered in this example, it 

is shown in the imported view of the compartment. As discussed later in section 4.2.2, 

this IC can also represent the service provided by another, underlying compartment. 

The IC s → t shows the “communication service” created by the network compartment as 

it would appear to an external entity using it. This IC hence appears in the exported view 

of the compartment: typically, the ICs exported by a compartment can be imported by 

other compartments. 
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Finally, the structural view of the figure shows the internal processing elements (i.e. FBs) 

that execute the protocols and functions that form the “compartment stack”. Note that for 

simplicity the figure shows a single FB but in practice there could be multiple 

interconnected FBs providing the “compartment stack”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6. Different Views of a Compartment: Imported View, Structural View and 

Exported View  

 

Figure 2-7 illustrates how compartments are formed by a set of communication elements 

(FBs), the communication media between the communication elements (ICs), and the 

dynamic binding elements (IDPs). The figure also shows how an IC can actually abstract 

(or hide) the service provided by another underlay compartment. 

 

Node A Node B

data in

data out

exported

view

structural

view

Network compartment

This shows that there is really just one IDP "mapped" in the different views. 

imported

view

IDP is the access point to the IC

"service"  provided by an 

underlying compartment or hardware

IC abstracts communication

service provided by

the compartment

u

s

s

u

v

t

t

v

FB FB
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Node B

Node A

Node A

Node BNode C

Node B

Node A

Node A

Node BNode C

 

Figure 2-7. The Compartment: A policed set of Functional Blocks (red), Information 

Channels (green), and Information Dispatch Points (black) 
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3 THE COMPARTMENT API 

As described previously, network compartments in ANA are free to internally use their 

choice of addressing, naming, routing mechanisms, protocols, packet formats, etc. The 

objective is that ANA fosters variability and evolution by not imposing any restriction on 

the internal network operation of compartments. 

However, to foster and guarantee all possible and unforeseen interactions within ANA, 

all compartments must support a generic compartment API which provides the “glue” 

that permits the building of complex network stacks and packet processing paths. With 

respect to application development, a key requirement is that the API supports generic 

function prototypes and arguments such that applications can use the same programming 

primitives when communicating to any compartment. In other words, a long-term 

objective of ANA is that developers can write “compartment-agnostic” applications that 

do not need to be modified to support new network compartments. 

For example, with ANA one could write a web browser that takes any opaque string as 

input, finds the right network compartment for handling this address or name, requires 

from this compartment an information channel to the destination and eventually sends the 

data to the destination FB without, at any time, having to understand the syntax of the 

input string. This is different from the current situation with sockets where a programmer 

must use and properly set the appropriate sockaddr_ structure depending on the 

“network compartment” being accessed. This hard-coding assumes prior knowledge of 

“who uses what” and seriously hinders innovation (e.g. all applications had to be re-

written to support IP version 6). 

3.1 Basic Primitives 

The ANA compartment API currently offers six fundamental primitives detailed below 

with some simplified C-style function prototypes. . These primitives constitute the 

fundamental and generic interface used to interact with network compartments. In ANA, 

all compartments must support these generic primitives. 

• IDPs = publish (IDPc, CONTEXT, SERVICE): to request from a compartment 

that a certain service becomes reachable via the compartment (identified by IDPc) 

in a certain context. When successful, publish returns an IDP (IDPs) via which 

the service has been published. 

• int = unpublish (IDPc, IDPs): to request from a compartment (identified by IDPc)  

that a certain service is no longer reachable via this compartment and context. The 

primitive returns an integer value to indicate a successful request or some error 

condition. 
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• IDPr = resolve (IDPc, CONTEXT, SERVICE): to obtain from a compartment 

(identified by IDPc) an information channel to communicate with a certain service 

that has been published in some context inside the compartment. When successful, 

resolve returns an IDP (IDPr) via which the remote service can be reached. 

• int  = release (IDPc, IDPr): to release a previously resolved information channel 

identified by the IDPr. The primitive returns an integer value to indicate a 

successful request or some error condition. 

• info = lookup (IDPc, CONTEXT, SERVICE): to obtain further information 

from a compartment (identified by IDPc)  about a certain service that has been 

published in some context inside the compartment. When successful, lookup 

returns some information (to be detailed later) about the service being looked up.  

• int = send (IDPr, data): to send data to a service which has been previously 

resolved into the IDPr. The function returns an integer value to indicate a 

successful request or some error condition. 

The two fundamental notions of CONTEXT and SERVICE have been introduced in 

order to be able to explicitly specify what (service) and where (context) “inside a 

compartment” a certain resource must be published or resolved. In other words, the 

context typically provides a hint to the compartment how to resolve the requested service 

while the service describes a resource inside the context. These notions are further 

detailed in the next section. 

Note that all compartments such as Ethernet, IP, DNS, etc., must support this generic 

API. In our current implementation, both the context and service arguments are simply 

character strings. As such, one can write “compartment-agnostic” code where there is no 

need to have any a priori knowledge about a certain compartment in order to use its 

services. This contrasts to the socket API where one must explicitly know which 

sockaddr data structure should be used with a given “compartment”: i.e., sockaddr_in 

for AF_INET, sockaddr_ll for AF_PACKET, etc. 

3.2 The Context and Service Arguments 

The intuitive “design philosophy” behind the ANA API is that, for any kind of network 

applications and protocols, a user typically wants to find or reach something (the 

SERVICE) with respect to some scope (the CONTEXT) inside a network compartment. 

In order words, the SERVICE is what the user is looking for (or wants to communicate 

with, download, etc.), and the CONTEXT defines where and how (in which scope) the 

network operation (e.g. resolve) must be done. Based on our current experience with the 

API, we believe that it is possible to fit most if not all networking applications and 

protocols into the CONTEXT/SERVICE communication model. 

For example, in an IP compartment one would use IP addresses as CONTEXT values 

with SERVICEs such as "tcp:80" or "udp:53", while in a DNS compartment the 

CONTEXT would be used to specify record types (e.g., "A", "MX") with SERVICEs 

being FQDNs such as "www.example.com". In a peer-to-peer file sharing system, 
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one could use the CONTEXT to specify a search scope with boolean operators (e.g. 

"title AND (rock OR blues)") while the SERVICE could specify keywords 

(e.g. "satisfaction"). Note that the SERVICE argument is a description of the 

service to be published or resolved, and is typically not interpreted by the compartment 

FB. The type of the SERVICE argument is not fixed: this argument can be a port or 

protocol number, a string (e.g., URL or filename), an IP address, a hash value, etc. 

Finally, ANA also mandates that all network compartments understand two generic 

CONTEXT values. The generic CONTEXT "*" specifies the largest possible scope as 

interpreted by the compartment, while the "." CONTEXT restricts the scope to node-

local operations. For example, the "*" CONTEXT would map into the CONTEXTs 

"FF:FF:FF:FF:FF:FF" and "255.255.255.255" for respectively the Ethernet 

and IP compartments, while the "." CONTEXT would map into the CONTEXTs 

"00:00:00:00:00:00" and "127.0.0.1". 

In the current implementation of ANA, the CONTEXT and SERVICE arguments of the 

API are formed from a simple <pointer,length> tuple so there is maximum 

flexibility to specify them. However, we currently favour printable (human readable) 

strings as a public/external format for both the CONTEXT and SERVICE arguments. 

The key motivation is that ASCII is a universal format that can be read and given by 

human users and can easily be manipulated with lexical tools and algebras (e.g. regular 

expression matching). Moreover, using strings as public formats avoid the need to know 

anything about the internal encoding used by compartments (e.g. no need to know that an 

IP address must be encoded in network order). 

In the Appendix, we provide some further examples on how the compartment API is 

currently used in ANA to model existing networks and protocols. 

3.3 An Example 

To illustrate these primitives and the notions of context and service, we describe a basic 

example in which two “IP-stacks” communicate over an Ethernet compartment 

(segment). Figure 3-1 illustrates the publish primitive inside a node M where the 

functional block IP-FB publishes itself in some Ethernet compartment by calling 
publish(y, “*”, “1.2.3.4”); 
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Ethernet 

Compartment "1.2.3.4" � z

node M

ETH-FB

IP-FB

z
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Figure 3-1. Publishing the IP service in the underlying Ethernet Compartment 

 

The IDP ‘y’ identifies the compartment: it is actually bound to the Ethernet functional 

block (FB) inside node M. The context argument “*” is the well known context which 

specifies the largest possible context as interpreted by the compartment. For Ethernet, this 

typically means the entire segment. The service “1.2.3.4” is simply the IP address of the 

IP FB via which it wants to become reachable via the Ethernet compartment. Should the 

publish request be successful, the Ethernet FB keeps a mapping between the service 

“1.2.3.4” and the node-local IDP z (returned by the call to publish). 

Note that this publish example is somehow similar to what happens in today’s computers 

when one configures an Ethernet interface with an IP address via the ‘ifconfig’ command, 

and this makes the IP address resolvable via ARP. 

Figure 3-2 now illustrates how an IP stack inside node N can instantiate a communication 

channel to the IP stack in node M by calling resolve(e, “*”, “1.2.3.4”); 

 

node N

ETH-FB

Ethernet 

Compartment

i

e
resolve

"1.2.3.4" � z

t � z

IP-FB

node M

ETH-FB

IP-FB

z
y

publish

r
reply

s

How the resolution is performed

is compartment specific
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Figure 3-2. Resolving  a peer node’s IP service through the underlying Ethernet 

Compartment 

The IDP ‘e’ identifies the Ethernet FB inside node N, the context is set to “*” to specify 

the largest possible context (here the entire segment), and the service is set to “1.2.3.4”. 



FP6-IST-27489 ANA Project - Deliverable D1.9 – ANA Blueprint - Second Version Page 16 

The successful request returns the IDP ‘s’ which can be used by the IP FB in node N to 

send data to the IP FB in node M. 

In ANA, how a resolve request is handled is left to the compartment. For Ethernet, this 

typically results in the sending of a dedicated message containing the service being 

searched. Note that the context “*” translates inside the Ethernet compartment into the 

Ethernet broadcast address “FF:FF:FF:FF:FF:FF”. 

In this example, when the Ethernet FB in node M receives the resolve request message, it 

finds out that the service “1.2.3.4” has been published locally and hence replies with a 

dedicated message containing a token ‘t’ which is used to demultiplex incoming packets 

into the IDP ‘z’ in node M. As a result, the Ethernet FB inside node N creates a local 

entry mapping the IDP ‘s’ into the destination MAC address ETH-M and the token ‘t’. 

When data is sent to the IDP ‘s’ by simply calling send(s, data), the Ethernet FB in 

node N adds to the data an Ethernet header with destination address ETH-M and the next 

header 16-bit field set to ‘t’. On the receiving side, the token ‘t’ is mapped into the local 

IDP ‘z’ to which the payload of the Ethernet frame will be passed. 

Compared to today’s network protocols, the resolution procedure of this example is the 

ANA equivalent of a traditional ARP resolution where an IP address is resolved into an 

Ethernet address.  

3.4 The Lookup Primitive 

So far, we have restricted our examples to the resolve primitive which, when successful, 

instantiates a communication channel to the destination service. However, in some cases 

one may not want to obtain a communication channel, or a compartment may simply not 

provide communication channels. This is for example the case with the DNS which 

resolves DNS names into IP addresses but does not create a communication channel to a 

name being resolved. 

To support such scenarios, we introduce the lookup primitive which has the same 

prototype as the resolve primitive except for the return value. While the resolve primitive 

returns an IDP to a communication channel, the lookup primitive “simply” returns some 

information. This information may contain multiple TLV (Type-Length-Value) items 

such as contexts, services, and IDPs, which can potentially be used in follow-up resolve 

and/or lookup requests. For example, a DNS lookup request for a certain name may 

return a new context such as “1.2.3.4” or “2001::1” which could then be used in a further 

resolution request via respectively the IPv4 and IPv6 compartments. 

How exactly this information should be handled is out of scope of the compartment API 

operation and is left to the entity performing the lookup request and getting back the 

information. However in the near future, we plan to provide more detailed guidelines 

describing how the lookup information should be handled. Our objective is that these 

guidelines can be used by developers in order to implement automatic procedures for 

handling the information returned by a lookup request. 
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4 FURTHER DETAILS AND OPERATIONS 

4.1 The Node Compartment 

The Node compartment is present in every ANA node: it is the primary hub via which all 

node-local interactions with ANA elements and compartments are initiated. 

“Communication” with the node compartment is similar to communications with any 

compartment, i.e. it relies on the same basic mechanisms and API described in the 

previous section. In a sense, the node compartment is like a “microscopic” network 

compartment involving just one ANA node. 

4.1.1 Private views inside the node compartment 

For each FB using the ANA architecture, the node compartment offers a dedicated 

communication workspace and a private view (representation) of the ANA node. Each 

view may be governed by its own policies, access rules, and may have strict or loose 

boundaries with other views. For example, a view may include shared elements provided 

by other applications or protocols. 

 

FB1 FB2 FB3

Node Compartment

a

b

c

f
Public viewg

h

Private view

of FB3

Private view

of FB2

Private view

of FB1

 

Figure 4-1. The Node Compartments and its private and public views 

Upon startup, each FB receives a dedicated IDP to access the node compartment. For 

example in Figure 4-1, the functional blocks FB1, FB2, and FB3 respectively use the IDP 

values a, b, and c to communicate with the node compartment. The node compartment 

can hence easily control what is and what is not visible and accessible for each functional 
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block. Note that in the figure each of these IDPs appears in the private view of the 

corresponding FB. 

In addition to private views, the node compartment also supports a public view: any IDP 

published in this view is reachable by any other entity of the node compartment. For 

example in the figure, the functional blocks FB1 and FB2 are reachable via respectively 

IDP f and IDP g in the public view. This means they can be accessed by any other FB. In 

contrast, FB3 is only reachable by FB2 via the IDP h published in the private view of 

FB2. 

Basically, the views in the node compartment allow FBs to selectively decide whether a 

resource (i.e. an IDP) is available to all other FBs or to only a selected FB. This simple 

mechanism permits the isolation of certain resources and it offers a fine-grain access 

control for IDPs. 

4.1.2 The node compartment repository 

To allow node-local FBs to publish their presence and discover other FBs, the node 

compartment maintains a repository that contains the list of local FBs and IDPs attached 

to them. In particular, this database stores the list of available (network) compartments 

that clients can request access to. This database also stores information about services 

that have been advertised and provided by other clients, and information about functional 

blocks that are provided by ANA, e.g., for packet encryption, data compression, 

transmission rate control, etc. 

Typically, an FB that wants to become visible to other FBs in the node compartment 

publishes itself inside the node compartment with some SERVICE name. To do that, the 

FB uses the publish primitive of the compartment API: the IDPc argument is set to the 

IDP of the node compartment, the SERVICE argument is set with the name and 

keywords the FB wants to appear in the node repository, and the CONTEXT is either set 

to “*” (i.e. for public view), “.” (i.e. for the FB’s own view), or to the name of the private 

view of another FB (how this is encoded is implementation specific). 

To find out which other FBs are available inside the node compartment, an FB must use 

the resolve or lookup primitives of the compartment API in a similar way as the publish 

primitive. However when discovering other FBs, an FB can only resolve resources 

published in its own view and in the public view of the node compartment.  

4.2 Network Compartments 

A Network Compartment is a compartment that encompasses several ANA nodes and 

involves communication across an underlying network infrastructure.  

As for any compartment, network compartments also consist of a policed set of FBs, ICs, 

and IDPs. In case of a network compartment, the FBs providing the compartment’s 

communication stack are typically located on different ANA nodes. Note that ANA does 

not distinguish between end systems and intermediate nodes – a network compartment 

includes both types of node. ICs provide the communication channel between the 
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networked ANA nodes hosting the FBs. For network compartments, ICs typically 

represent the underlying communication channels (e.g., an Ethernet link or a wireless 

channel) over which communication between the ANA nodes takes place or the 

abstractions of the service that is provided by an underlying compartment.  

Examples of a network compartment are:  

• A corporate network – whereby the hosts (i.e. PC and servers) and network nodes 

(i.e. routers) owned by the corporation host the FBs that provide the 

communication stack that is used within the corporate network compartment, and 

the network links (e.g., layer 2 links or VPNs) represent the ICs; the corporate 

network compartment also defines its own (private) addressing domain and 

defines the policy/trust domain. 

• A wireless sensor network - whereby the sensor nodes host the FBs that provide 

the communication stack used within the sensor network compartment, and the 

wireless channels between the sensors represent the ICs.  

• An overlay network – whereby the overlay nodes host the FB that provide the 

communication stack for the overlay, and the virtual links established between the 

overlay nodes represent the ICs.  

4.2.1  Compartments and Layers 

Network compartments can operate at the equivalent of various layers of the OSI model. 

That is, communication among compartment members can take place, for example, at the 

link layer, the network layer and/or the transport layer. A compartment can also combine 

the functionality of several layers (e.g., link layer and network layer) in one compartment.  
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Figure 4-2. Relation between Compartments and OSI Layers 

Compartments that operate at different layers or different scopes (e.g., local vs. global), 

can be “layered” on top of each other. For example, a compartment that offers end-to-end 

communication services across heterogeneous network domains can be “overlaid” on top 
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of the compartments providing the functionality in each of the underlying network 

domains. 

Unlike in today’s OSI implementations (e.g. in the TCP/IP stack), where layers abide a 

strict order (i.e. Layer 4 can only sit on top of Layer 3), compartments can be combined 

in more flexible ways. On the one hand, ANA enables compartments to be layered on top 

of any other compartments – independent of its actual semantics. In that sense, ANA is 

now providing the ultimate interpretation of the OSI/RM, which already envisioned such 

flexibility. On the other hand, as illustrated above ANA allows for a single compartment 

to provide semantics and functions of more than one layer (indicated by the blue 

rectangle), or even just some aspects of a conventional OSI layer implementation (e.g., 

just a control plane or management plane function). As such, compartments have much 

more “fluid” semantics (depending on the mission and the number of planes they span). It 

is even possible that a single compartment implements a whole communication stack.  

Finally, compartments also extend the OSI layer model by supporting administrative 

policies, which enable flexible and fine-grained control of compartments entities, 

whereas OSI layers have no notion of administrative boundaries. 

4.2.2  Layering Compartments 

The ability of layering compartments on top of each other depends on the functionality 

(i.e.  semantics) that the upper compartment expects from an “underlay” compartment 

and that the lower compartment can offer to an “overlay” compartment. 

In order to support layering of compartment X over compartment Y, it is required that 

compartment X supports the particular compartment interface of compartment Y, which 

then simply “encapsulates” the data and opaquely passes them through the underlay 

compartment. In ANA this requirement is enforced since all compartments must support 

the API described in Section 3. This ensures that any compartment can communicate with 

any other compartment with a minimal and guaranteed set of interfaces. 

Figure 4-3 illustrates an example whereby a FB of the overlay compartment 

(Compartment N) communicates with a peer FB via the underlay compartment 

(Compartment L1). 
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Compartment N

Compartment L1

  

Figure 4-3. Layering of compartments – the overlay compartment makes use of services 

provided by the underlay compartment. 

Further details on how inter-compartment communication is handled are provided in 

section 4.3.2.  

4.3 Communication Paradigms  

4.3.1 Intra-Compartment Communication  

One common characteristic of ANA compartments is that all members agree on some 

common set of operational and policy rules. This “recipe” includes the communication 

principles, protocol(s) and policies to be used for intra-compartment communication. It 

defines for example:  

• How communication elements are identified (i.e. naming and addressing). 

• How identifiers are resolved (i.e. name lookup or address resolution). 

• How to route information inside the compartment (i.e. routing). 

• How to send/forward information (i.e. forwarding). 

• What protocol to be used to communicate between peer elements. 

 

Figure 4-4 illustrates a scenario where a set of ANA nodes (indicated in yellow) forms a 

network compartment in order to communicate with each other. All nodes that want to be 

part of the compartment must provide the compartment stack (indicated by the blue 

boxes) - i.e. every node has to support the necessary functionality (i.e. functional block) 

to join the compartment and communicate according to the compartment’s 
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communication scheme. Nodes that provide the required functionality are able to operate 

according to the compartment rules, and hence can participate in the compartment 

(indicated by the blue circle).   

The compartment defines the intra-

compartment communication scheme 

– i.e. how naming/addressing is 

done, how packets are routed, what 

protocols are used, etc.

ANA Node

“Compartment 

Stack” –

a (composed) 

Functional Block

Only nodes that support the 

compartment stack can 

become part of a compartment

 

Figure 4-4. Intra-Compartment Communication 

How communication inside the compartment is handled is entirely up to the 

compartment. Depending on the type and purpose of the compartment, different 

communication schemes can be applied. For example, a compartment that intends to 

provide the communication context for a Wireless Sensor Network, where the main goal 

is to aggregate sensor information on low-power devices, can implement a completely 

different communication scheme (i.e. addressing, routing, etc.) and protocol than a 

compartment that targets end-to-end communication among user terminals, such as for 

voice communication. While the former can use a very simple addressing and routing 

scheme that is able to aggregate the sensor information, the latter requires a naming or 

addressing scheme that supports end-to-end communication and a routing scheme that 

minimises end-to-end delay and jitter.  

Since compartments have full autonomy on how to handle intra-compartment 

communication, there are no global invariants (except the compartment API) that have to 

be implemented by all compartments or all communication elements.  

4.3.1.1  Compartment Multi-homing  

ANA nodes can participate in multiple compartments. A node simply needs to support 

the necessary compartment functionality (i.e. the compartment stack) and join each of the 

compartments.  

Figure 4-5 illustrates an ANA node that is multi-homed (i.e. part of several compartments 

at the same time). This enables the node to communicate with members of both 

compartments.  
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ANA Nodes can participate in 

many compartments – they 

just need to support the 

(different) compartment stacks

 

Figure 4-5. Multi-homing in several Network Compartments  

It should be noted however that the fact that one node is multi-homed does not 

necessarily allow any of the other nodes to communicate through this node with ANA 

nodes in other compartments. In order to enable inter-compartment communication 

between ANA nodes of different compartments, the necessary interworking functionality 

must be provided that allows translation or proxying of communications between the 

different compartments.  

Further details on how inter-compartment communication is handled within ANA are 

provided in the following section. 

4.3.2 Inter-Compartment Communication  

The issue of inter-compartment communication in ANA is discussed in this section. An 

analysis of various inter-compartment communication scenarios is followed by a set of 

principles or recommendations on how to best handle inter-compartment communication 

in ANA.  

4.3.2.1 Analysis of Inter-Compartment Communication 
Scenarios 

This section analyses different inter-compartment communication scenarios, whereby 

communication entities of adjacent compartments want to communicate with each other. 

The issues, difficulties and limitations of direct communication between peers across 

compartment boundaries are highlighted. 

Note that in this section an identifier is simply considered some sort of an “attribute” that 

identifies a communication element (e.g., a FB, a network node, etc.) with regard to some 

semantics. Example semantics involve:  

• host/interface location (e.g., an address as in IP) 

• host entity (e.g., a node/host ID as in HIP) 

• host role (e.g., a service identifier as in port numbers) 

• host property (e.g., OS platform, performance capability) 
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• combined identifiers (e.g., network location and host role) 

Case 1: Without a common identifier space or overlay compartment 

Figure 4-6 shows a scenario whereby two communication elements of adjacent 

compartments want to communicate with each other. In this case, it is assumed that the 

two compartments operate completely independently (for example, one compartment 

based on IPv4 and the other based on IPv6).  

Since the two compartments are completely independent, it must be assumed that there is 

no well-known mapping between the different communication syntax and semantics 

known to the communication elements of the different compartments. Only the gateway 

entity, which is part of both compartments, is able to communicate in both compartments. 

This case further assumes that there exists no other, higher-level common identifier space 

(e.g., DNS) or common overlay compartment (e.g., a common transport protocol) that 

offers the peer entities of the different compartments a common syntax and semantics for 

the communication. 

The following examples illustrate through real-life networking scenarios cases where 

such type of direct communication between peers of adjacent compartments occur. 

 

Communication entities that are 

member of several compartments 

can act as “Gateways” between 

the different compartments

A
B

C 1

2

3

The Interworking Functional Block (IFB) 

“translates” between the different 

communication schemes and identifier 

spaces of the involved compartments
 

Figure 4-6. Inter-compartment communication scenario without a common identifier space 

or overlay compartment 

Example 1:  

For example 1, the left (blue) and the right (green) network compartments illustrated in 

Figure 4-6 are envisioned to be of the same type (i.e. both use the same protocol suites) 

and they only use different identifier spaces (e.g., addresses or ports). Then, the gateway 

entity “C/1” only needs to do identifier translation. The required translation functionality 

is limited to the protocol layer within which the identifiers need to be translated. In the 

most typical case that will be the network layer, which makes the gateway entity “C/1” a 
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NAT box, but in theory, this translation could also occur at any other layer (e.g., the link 

layer) or a combination of layers (e.g.,  network plus transport layer).  

Example 2:  

For example 2, the left (blue) and the right (green) network compartments illustrated in 

Figure 4-6 are envisioned to be of similar type, but not the same. For example, both 

compartments have similar protocol suites in terms of numbers of layers and/or 

functionality, or provide a similar “service” to the clients. Still, translation from one 

protocol suite to the other (e.g., TCP/IPv4/TokenRing and TCP/IPv6/Ethernet) is doable. 

However, in this case the gateway entity “C/1” must provide more complex translation 

functionality than simple identifier translation. It must also be able to perform protocol 

translations at one or more layers. A typical example of this is a gateway that can 

translate IPv4 to IPv6 headers and vice versa. Note that although this function is not very 

difficult to implement, some loss of functionality may be encountered during the 

translation (e.g., IPv6 extension headers might need to be dropped if similar options do 

not exist in IPv4). Therefore translation is limited to support the common denominator of 

the features of the two protocols.  

Example 3:  

For example 3, the left (blue) and the right (green) network compartments illustrated in 

Figure 4-6 are envisioned to be of completely different nature. For example, the 

compartments use very different protocols, both syntactically and semantically (e.g., one 

provides a best effort unicast service and the other provides an episodic publish-subscribe 

type of functionality), and identifier semantics (e.g., one uses identifiers that encode 

topological information and the other uses identifiers that encode service capability). In 

such a case, the communication entity “C/1” needs to have a very complex translation 

capability that not only spawns across all the common denominator of the layers of both 

stacks, but also needs to be able to collapse/expand layer functionality from one stack to 

the other.  

In addition to this complexity, there is also the significant challenge of naming, address 

and routing that needs to be resolved. It is assumed for this type of inter-compartment 

communication that the communication entities of the left compartment (blue) do not 

understand the identifier syntax and semantics of the right compartment (green). 

Therefore, the gateway entity “C/1” needs to be able to make arbitrary decisions based on 

some external information (e.g., policies) how to propagate data from the source entity 

through the one compartment and then to the destination peer in the other compartment – 

without common addressing and routing semantics. 

Conclusion:  

End-to-end communication across heterogeneous compartments without a common 

identifier space or overlay compartment is possible only if the peering compartments 

have a well-known translation function, both for the syntax and the semantics of the 

various identifier spaces and communication schemes.  
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Case 2: With a common overlay compartment for the communication peers 

Figure 4-7 shows the same scenario, but under the condition that both communication 

peers are members of a common overlay compartment (e.g., a common DNS 

compartment or a common HIP compartment). This reduces the problem of direct 

communication between the peers of the adjacent compartments to the problem of routing 

and forwarding – as the peer entities have a common communication context.  

The gateway entity is not a member of the overlay 

compartment (i.e. it does not have an identifier and 

does not support the communication scheme of the 
Brown compartment)

x y

A B
C 1

2 3

 

Figure 4-7. Inter-compartment communication scenario whereby the communication peers 

are members of a common overlay compartment 

This case assumes that communication entity “A” of the left compartment (blue) and 

communication element “3” of the right compartment (green) are also members of a 

common overlay compartment. The common overlay compartment gives the 

communicating peers (“x” and “y”) a common identifier space that allows them to 

directly address each other, and a common communication context which allows the end 

hosts to understand the syntax and semantic of the exchanged data.  

As the gateway element “C/1” is not part of the overlay compartment in this scenario, it 

is not able to understand the syntax and semantics of the communication at that “layer”. 

The gateway is hence is not able to take this into account when translating between the 

different underlay compartments. However, most importantly, the fact that the gateway is 

not visible at the overlay level prevents the underlay routing mechanisms to take 

advantage of the routing knowledge of the overlay compartment (e.g., which gateway to 

choose in the underlay compartment to optimise the overlay routing path). 

Conclusion:  

As the gateway element “C/1” is not part of the overlay compartment, the routing 

knowledge that is available at the overlay compartment (i.e. how to get from “x” to “y”), 

cannot be used to identify the gateway node as an intermediate hop between two underlay 

compartments. The lack of end-to-end routing knowledge at the underlay compartment 

level leads to inefficient routing in case of inter-compartment communication. 
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Case 3: With a common overlay compartment that includes the gateway entity  

Figure 4-8 shows the same scenario, but under the condition that the gateway entity 

“z/C/1” is also visible at the overlay compartment level. As a result, when “x” want to 

send packets to “y”, the underlay compartment can make use of the routing knowledge at 

the overlay level. Since the “next hop” in the overlay compartment, i.e. the gateway 

entity “z/C/1”, is also part of the left underlay compartment (blue), routing in the 

underlay becomes purely an intra-compartment issue. The routing knowledge of the 

overlay level is used by the underlay compartment to efficiently transmit the data from 

the source entity “x/A” to the correct gateway entity “z/C/1”.   

This case also includes the scenarios where the gateway entity does not support the actual 

communication scheme (e.g., data plane protocols) that is used in the overlay 

compartment, or where the overlay compartment is only used for addressing and routing 

purposes. For example, a gateway entity may simply “translate” between the different 

underlay compartments. The classical “bridge” between two distinct LAN technologies 

(e.g., IEEE 802.x and IEEE 802.y) using the same address space (i.e. a common overlay 

compartment for addressing) is an example of such a scenario. The key difference to the 

Case 2 type scenarios is that the addressing and routing knowledge of the overlay 

compartment is used to “translate” between the different underlay compartments. 

x y

A B
C 1

2 3

z

The gateway entity is also a member of the overlay 

compartment (i.e. it does have an identifier in the 

Brown compartment and supports the communication 
scheme of the overlay compartment)

 

Figure 4-8. Inter-compartment communication scenario whereby the communication peers 

and the gateway entity are members of a common overlay compartment 

Conclusion:  

As the gateway entity is now part of the overlay compartment, the routing knowledge of 

the overlay compartment (i.e. what is the “next hop” from “x” to “y”) can be used to 

efficiently route and forward the data within and across the underlay compartments. 

Hence, the availability of a common overlay compartment that not only includes the 

communicating peer entities, but also the gateway entities (e.g., “z/C/1”) enables efficient 

inter-compartment communication across heterogeneous underlay compartments.  
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4.3.2.2 Principles for Inter-compartment Communication 

From the above analysis of different inter-compartment communication scenarios, the 

following principles and recommendations can be derived: 

1. There is a need for a common compartment among communicating peers 

Since compartments define the syntax and semantics for communication within a 

certain context, peers that want to communicate with each other must be part of a 

common compartment. Otherwise, they are not able to process (understand) the 

format and actual information carried in the exchanged data. 

2. It is advantageous to have a common “interworking” or overlay compartment  

The use of a common “interworking” compartment that provides a uniform 

context for the communication among its members, allows hiding of potential 

heterogeneity at lower layers (e.g., different underlay compartments). As 

indicated in the conclusion above, a common overlay compartment that includes 

the gateway entities of the various underlay compartments also allows for 

efficient end-to-end routing at the underlay level. 

The fact that ANA support flexible and dynamic composition of communication 

stacks facilitates the introduction of such interworking “shims” as the need arises. 

3. There is a need for “interworking functionality” between adjacent compartments  

As indicated in the analysis above, inter-compartment communication among 

directly adjacent or layered compartments that are of different nature require 

appropriate interworking functionality, which allows “translation” between the 

different communication syntax and semantics of the compartments. Since the 

required interworking functionality depends entirely on the compartments that 

need to interwork with each other, there is no need for a common interworking 

function between all compartments along the end-to-end path – i.e. different 

interworking functions (depending on the compartments involved) can be 

provided. 

As illustrated in the analysis above, the focal point of the inter-compartment 

communication discussion are the gateway entities and the Interworking Functional 

Blocks (IFBs) that enable direct interworking between adjacent compartments. IFBs are 

conceptually part of directly peering compartments, and hence are able to “translate” 

between the different communication syntax and semantics of the different 

compartments. The IFBs are, for example, responsible for the mapping of the identifiers 

(i.e. name/address) as well as the translation/capsulation of the communication protocols.  

Figure 4-9 shows in more detail how inter-compartment communication is handled in the 

case of a common “interworking” or overlay compartment. The example is based on the 

same scenario as the one illustrated in Figure 4-8. In this scenario, there are three entities 

involved. Two peer entities, namely “x/A” and “y/3”, that want to communicate with 

each other despite the fact that they are not part of a common underlay compartment 

(e.g., because they don’t share a common link layer technology), and a gateway entity 

“z/C/1”, which is part of both underlay compartments.  
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In order to allow for the peer entities to talk to each other, they are also part of a common 

overlay compartment. This offers the peer entities a common communication context, 

which allows the peers to address and resolve each other, and gives them a common 

communication protocol. Without a common communication context, the peer entities 

would not be able to indicate with whom they want to communicate, nor would they have 

a common understanding on what the exchanged messages mean. 

The fact that the gateway entity is also part of the common overlay compartment 

facilitates end-to-end routing across the heterogeneous underlay compartments. It allows 

the peer entity “x/A” to resolve the gateway entity “z/C/1” as next-hop at the overlay 

level. The overlay compartment at the sender side (left) is thus able to resolve the ‘next-

hop identifier’ at the overlay level (“z”) through the underlay compartment. 

In addition to the next-hop resolution, the sender “x/A” is also responsible to handle the 

necessary protocol translations or the encapsulation of the payload for transmission of the 

information in the underlay compartment “X”. The gateway entity “z/C/1” and the 

receiving end “y/3” perform the opposite functions, namely they decapsulate the 

information or performs the necessary protocol translations between the underlay and the 

overlay compartment. 

 

Common Overlay Compartment

Underlay Compartment X Underlay Compartment Y

x y

A C 1 3

z

Peer Entity x/A

Gateway Entity z/C/1

Peer Entity y/1

 

Figure 4-9. Inter-compartment communication scenario with a common overlay 

compartment. 
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5 ANA NODE 

5.1 Introduction and scope 

The content of this section mainly results from the work being carried out in Tasks 1.3 

(Network abstractions and communication paradigms),1.4 (Communication mechanisms) 

and 4.1 (Testbed prototyping, management, and evaluation). While section 2 of this 

document provides a conceptual description of ANA and its operation, this section 

focuses on the description of the features that an implementation of ANA must support, 

and how the abstract mechanisms previously presented are provided by “the low-level 

machinery” of the architecture. The objective of the two sections (2 and 5) is to provide a 

complete picture of ANA, from the conceptual abstractions down to the mechanisms used 

at the implementation level. 

This section is organised as follows. Subsection 5.2 provides an overview of the 

functionalities of the ANA node and introduces its main components. These components 

are then described in more detail in subsection 5.3. 

5.2 Overview of the ANA Node functionalities  

The ANA Node is a collection of both mandatory and optional software components that 

basically allow one “to run ANA” on a physical device (e.g., computer, sensor, network 

processor, switch, router, etc.). Three components can be identified:  

• MINMEX, a minimal component for configuring and re-configuring network 

functionality. 

• ANA playground, where optional functionality is made accessible. 

• ANA hardware abstraction layer. 

Each of these elements, also shown in Figure 5-1, is briefly introduced in this section.  

The mandatory and underpinning component called MINMEX provides the basic low-

level functionalities which are required to bootstrap and run ANA. It also provides the 

generic set of methods (API) that are used by “clients” of the MINMEX (i.e. protocols, 

applications) to interoperate with the MINMEX and the elements it hosts and with other 

clients of the architecture. The MINMEX is described in detail in section 5.3.  

The ANA Node also implements an abstraction layer which offers a generic access to the 

hardware upon which it is executed. In particular, the abstraction layer has built-in 

functions to interface with the hosting operating system (e.g., Linux). To support legacy 

applications, an ANA Node should also provide an adaptation layer in environments that 

support e.g., Internet-style applications using the standard socket programming APIs. 
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This allows the re-use of existing applications in ANA without having to modify their 

code and re-compile them.  

Besides these components, the ANA node provides a development framework and API 

coupled with a dedicated execution environment where the more elaborated and complex 

networking functionalities of ANA are placed. This flexible component, known as the 

“playground”, can host commodity and potentially generic networking elements such as 

monitoring probes, routing protocols, and cryptographical services, up to self-contained 

network stacks, generic peer-to-peer middleware, and complex and dedicated learning 

algorithms. By design, the ANA playground hosts the autonomic protocols that will 

exhibit a self-* behaviour.  

Note that in contrast to functional blocks (FBs), information channels (ICs), and 

information dispatch points (IDPs) introduced in Section 2, the ANA node is not an 

abstraction of ANA. The ANA node is instead defined as the entity that hosts ANA 

elements: that is, the “node” is a property (for example “item x IS ON node y”), not an 

element that we need to define as an abstraction in our architecture. Only indirectly, the 

“ANA node property” is also captured through the compartment concept via the “node 

compartment” (see section 3). Via this abstraction, it is possible to query an ANA node in 

order to learn not only what high-level functions and services it hosts but also what 

network compartments it is connected to. This opens the way to offer choice to 

application on how to perform a communication task, while today an application hard-

codes the network it wants to connect to (e.g., via well known protocol values such as 

AF_INET or AF_INET6 in socket programming). 

5.3 ANA Node: architecture and components 

Figure 5-1 is a conceptual representation of an ANA node whose most prominent features 

are the MINMEX area (Minimal INfrastructure for Maximal EXtensibility) and the 

playground. The MINMEX area defines the common denominator among ANA nodes, 

and MUST be present in all implementations. The playground hosts the optional 

protocols that one is free to develop with the help of the functionalities provided by the 

MINMEX elements.  

Note that although the playground strictly contains optional components, a typical ANA 

implementation will be shipped with a set of “standard” features (i.e. functional blocks) 

to permit access to basic network compartments. 
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Figure 5-1. The components of an ANA node, embedded in an OS context. 

The “MINMEX approach” employed in the design of ANA permits us to focus on a 

simplified core and declare richer and more complex functionality as extensions of the 

architecture. In a sense, MINMEX forms the constant part of an ever evolving network: it 

is more an architecture framework than a network architecture by itself. Thus, a central 

role of MINMEX is to provide the generic functionalities to instantiate and run network 

compartments code and to provide a dedicated execution environment for each “instance” 

of a network compartment.  

The operations offered by the MINMEX can be characterized as follows: 

• Means to forward packets between applications, functional blocks, and interfaces. 

• The Node Compartment, allowing access to ANA communication mechanisms, 

protocols, and compartments. 

• A MINMEX controller which performs a continuous assessment of the basic 

operation of an ANA node. 

In the following three subsections, we provide a more detailed description of the 

components of the MINMEX that have not been described yet (the Node Compartment 

was already described in Section 4.1). 
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5.3.1 The Information Dispatch Framework (IDF) 

As introduced in section 2 of this document, the distribution of data packets in ANA is 

achieved via IDPs (Information Dispatch Points). To recap, data packets are always sent 

to an IDP which is itself bound to a functional block (FB) or an information channel (IC) 

(at least conceptually). This approach provides ANA with powerful indirection 

capabilities that permit seamless redirection of packet flows without the sender not 

(necessarily) being aware of any change: it will still send data to the same (starting) IDP.  

As shown by the set of examples in section 3, data following a communication path is 

typically sent to a starting IDP and then passed on through a chain of functional blocks to 

the downstream IDPs. This process is somehow similar to the hop-by-hop forwarding of 

data in today’s Internet. However while in the Internet a “hop” in the forwarding process 

is typically a network hop (i.e. data is passed on to a neighbouring network node), ANA 

extends and generalizes this concept to data being forwarded inside a node among FBs 

and to other (network-wide) nodes via ICs. Note that while (strictly speaking) data is sent 

to an IDP, it is up to the entity bound to the IDP to know to which “next hop IDP(s)” the 

data should be forwarded. Hence while conceptually IDPs are powerful abstractions of 

ANA, implementation-wise an IDP is actually an entry in a functionally enriched 

forwarding information base (FIB).  

The forwarding procedure inside ANA is illustrated in Figure 5-2, which shows data 

being 1) received by a node compartment, 2) forwarded inside the node compartment and 

3) forwarded to a distant node via an information channel. Data is received by IDP b 

which is bound to FB f2 that has next-hop IDP c. Data dispatching carries on until 

reaching IDP e which calls a low-level function provided by the ANA Node abstraction 

layer that sends data via a network interface. Typically for link-layer forwarding, IDP e 

will store the information (e.g., MAC address) needed to reach the next hop network 

node. Note that the figure also provides an abstract representation of the forwarding table 

being used. 

 

 

 

 

 

 

 

 

 

Figure 5-2. Data dispatch inside ANA. 
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In practice and as described in detail in [9], the interaction with the information dispatch 

framework is achieved via dedicated APIs: at the conceptual level one manipulates IDPs 

and has no direct access to the (real) internal data structure. With these APIs the (local) 

instance of a network compartment can create and delete IDPs and set per-IDP mandatory 

information such as the function bound to the IDP.  

A critical feature of the information dispatch framework (IDF) is that it is fully address- 

and name-agnostic: IDPs are identified by local labels (i.e. numbers) which have no 

networking meaning whatsoever. This is a key requirement since the IDF must dispatch 

data that (conceptually) belong to radically different compartments with any sorts of 

addressing and naming schemes. This neutral position allows this core component to 

support any new addressing or naming scheme that can be developed in the future.  

To separate concerns, IDPs are stored in Information Dispatch Tables (IDTs). An IDT 

typically contains all of the (node-local) IDPs that belong to some communication 

context, e.g., a given compartment or a given view of the node compartment. This 

conceptual separation prevents, e.g., unauthorized manipulations of IDPs or excessive 

resource (e.g., memory) consumption by misbehaving or faulty components. Note that in 

terms of implementation there may only be one table where each entry (IDP) would 

contain a field indicating which IDT it belongs to.  

In conclusion, one should note that while the information dispatch framework provides 

flexible and powerful mechanisms to create and dynamically modify data paths, it is not 

responsible for setting up and changing these paths. That is, the “control” is typically left 

to higher level entities such as the functional composition framework, ANA applications, 

or individual functional blocks that can configure and modify “data paths” according to 

some flow specifications and to the state of the network. 

5.3.2 The MINMEX Controller (MC) 

The MINMEX controller (MC) performs a continuous assessment of the basic operation 

of an ANA node. It is truly autonomous and basically performs a sanity and health check 

of the components running inside the node. The core objective of the MINMEX 

controller is basically to “protect” the MINMEX elements from faulty or misbehaving 

components in order to guarantee the performance of the ANA subsystem. Keeping such 

control separate and not embedded in all the other elements is beneficial for two main 

reasons. First, it simplifies the design and code of the other MINMEX elements and 

second, it allows control operations to be centralised and coordinated in one entity. The 

main drawback is that all control relies on a single entity which becomes a very sensitive 

component of the architecture. However, the MINMEX controller could potentially be 

implemented in a distributed way which would greatly reduce the risks of a total 

unrecoverable failure.  

The rest of this section outlines some of the fundamental activities of the MINMEX 

controller (MC). This description is not exhaustive and additional tasks may be added in 

the future as needs appear. However, note that the following control operations are 

mandatory and must be supported by all implementations of ANA.  
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• The MC periodically controls all the forwarding paths and states of the 

information dispatch tables. In particular, it must detect forwarding loops which 

may have been accidentally created. If a loop is detected, the MC must prevent 

entities to send data on the loop: this interfering action must generate an 

appropriate error code back at the sender side. Data circulating inside a loop must 

be destroyed. 

• The MC performs a garbage collection of unused or expired IDPs that may have 

become orphan IDPs if the entities using them are malfunctioning or have 

crashed. Such IDPs must be removed from the system in order to free resources. 

Note that this verification may become redundant or obsolete if IDPs are stored in 

a soft state manner. 

• In a similar manner, the MC performs a garbage collection of the entries in the 

node compartment. This task may also become redundant or obsolete if the entire 

repository in the node compartment relies on soft state storage. 

• In addition, the MC periodically controls the state of all the active functional 

blocks running in the system. If the MC detects that a functional block is 

malfunctioning or crashed (via e.g., the failure of a polling mechanism), the MC 

must either remove the FB from the system or try to re-instantiate this 

functionality. The action to be taken in the case of a failure may be specified by 

the FB itself upon start-up. 

• The MC provides the lowest level of access rights and control for accessing IDPs. 

For example and as already described, the MINMEX may maintain separate IDTs 

for different communication contexts: in that case, the MC must prevent un-

authorised access to IDTs and return an appropriate error code to the entity 

performing the rejected operation. 

5.3.3 The playground 

The playground contains all the optional extensions of the base ANA node. This is where 

complex protocols and functions are implemented and where network-wide autonomicity 

is achieved. It is the area where variety will exist, perhaps even programmability in an 

active networking sense. 

Typically, the playground will host both commodity and dedicated functionalities. 

Commodity elements are “public” components that one can re-use in order for example to 

compose more complex functions in an on-demand manner. This includes, e.g., 

cryptographical primitives, compression schemes, queuing systems, reliable transmission 

schemes, generic learning algorithms, and error recovery codes. How such elements can 

be dynamically composed is described in deliverable D2.12.  

The playground may also contain complex components that are specialised for a certain 

task and can hardly be re-used outside their initial design space. This category includes, 

e.g., fully-contained network stacks/heaps (”compartments code”), highly dedicated and 

optimized protocols such as delay-tolerant transmission schemes, and schemes for 

network coding. This classification is highly subjective and does not exist inside the 
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playground: we here merely want to highlight that functions inside the Playground range 

from simple re-usable components to complex and highly specialized elements.  

Note that in practice, the protocols of the playground interact with the MINMEX 

elements via a specific API that allow them to, e.g., initially communicate with the node 

compartment and then with network compartments, instantiate functional blocks and 

information dispatch points, and create information channels to distant peers. The current 

version of the API is described in details in the documentation of the ANA Core software 

as part of Deliverable D1.11 [9]. 
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6 CONCLUSIONS 

As stated previously in this document, the main intention of the Blueprint is to describe 

the reference model of the ANA network architecture. This includes a description of the 

basic abstractions and communication paradigms. Another aim of this document is to 

guide the prototyping of the ANA communication system throughout the project. 

At the coarsest level, the core abstraction of ANA is the “Compartment” which 

encompasses the notions of networks and realms and is the basic unit for the interaction 

and federation of networks. A key feature is that compartments reduce complexity by 

hiding the compartment internal communication complexity to the “outside world”, 

which interfaces with a given compartment via a generic API that all compartments must 

support. With compartments, networks can be decomposed into smaller and easier 

manageable units: each compartment has indeed full autonomy on how to handle internal 

communication (i.e. naming, addressing, routing, etc.). The boundaries of a compartment 

are typically based on technological and/or administrative boundaries or policy domains. 

ANA anticipates that many compartments co-exist and will provide the necessary 

functionalities such that compartments are able to interwork on various levels.  

At a more detailed level, compartments contain three kinds of abstraction: Functional 

Blocks (FBs), Information Channels (ICs), and Information Dispatch Points (IDPs). 

These abstractions are used to model the “internals” of a compartment and the service the 

compartment offers. The degree of details at which a compartment exposes its internal 

abstractions is specific to each compartment and ranges from full visibility to total 

opaqueness. 

At the lowest level, the underpinning component is the ANA Node, which is the entity 

that hosts the ANA elements and functionalities. It is the main interface to the host 

operating system or underlying hardware, and also provides an adaptation layer allowing 

legacy applications to be reused in an ANA context. The core and mandatory part of the 

ANA Node is the MINMEX framework, which provides the basic low-level 

functionalities required to bootstrap and run an ANA node. Beside the MINMEX 

framework, the ANA node provides a development framework – the “playground” –

where the more elaborated and complex networking functionalities of ANA are placed. 

For example, compartment-specific modules are executed in the Playground. 

The feedback obtained during the first and second prototyping phases (M13-M24 and 

M30-M36) has been used to extend and refine the first versions of the Blueprint. Further 

feedback that will be gained during the remaining prototyping phase will eventually lead 

to the specification of the final version of the Blueprint in December 2009. 



FP6-IST-27489 ANA Project - Deliverable D1.9 – ANA Blueprint - Second Version Page 38 

7 REFERENCES  

[1] H. Zimmermann, OSI Reference Model - The ISO Model of Architecture for Open 

Systems Interconnection. IEEE Transactions on Communications 28(4), April 1980, 

pages 425-432. 

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, The Click Modular 

Router. ACM Transactions on Computer Systems 18(3), August 2000, pages 263-

297. 

[3] C. Tschudin and R. Gold, Network Pointers. In Proc. of the first ACM Workshop 

on Hot Topics in Networks (HotNets-I), October 2002, Princeton, USA. 

[4] I. Stoica, D. Atkins, S. Zhuang, S. Shenker, and S. Surana, Internet Indirection 

Infrastructure. In Proc. of ACM Sigcomm’02, April 2002, Pittsburg, USA. 

[5] D. Clark, J. Wroclawski, K. R. Sollins and R. Braden. Tussle in Cyber-space: 

Defining Tomorrow’s Internet. In Proc. of ACM SIGCOMM, Pittsburgh, PA, USA, 

August 19-23, 2002, pp. 347-356. 

[6] D. Clark, R. Braden, A. Falk and V. Pingali. FARA: Reorganizing the Addressing 

Architecture. In Proc. of ACM SIGCOMM Workshop on Future Directions in 

Network Architecture (FDNA), Karlsruhe, Germany, Au-gust 2003, pp. 313-321. 

[7] J. Pujol, S. Schmid, L. Eggert, M. Brunner and J. Quittek. Scalability Analysis of 

the TurfNet Naming and Routing Architecture. In Proc. of 1st ACM Workshop on 

Dynamic Interconnection of Networks (DIN 2005), Cologne, Germany, September 

2, 2005, pp. 28-32. 

[8] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield, Plutarch: an 

Argument for Network Pluralism. In Proc. of the ACM Workshop on Future 

Directions in Network Architecture, August 2003, Karlsruhe, Germany. 

[9] G. Bouabene (Editor), D1.11: Second Public Stable Release of the ANA Core 

Software. Workpackage 1, Deliverable D1.11, December 2008. 

 

 

 

 

 

 

 

 



FP6-IST-27489 ANA Project - Deliverable D1.9 – ANA Blueprint - Second Version Page 39 

APPENDIX 

In this appendix, we provide examples of how existing networking technologies and 

protocols can be modelled using ANA. The objective is to illustrate the use of the 

CONTEXT and SERVICE arguments and highlight the flexibility of these constructs 

with concrete examples. 

 

Ethernet Compartment 

In this compartment the CONTEXT defines the scope on the Ethernet segment. The “*” 

CONTEXT means the entire segment (FF:FF:FF:FF:FF:FF) while the “.” CONTEXT 

means the FB-local scope (in Linux the loopback interface has MAC address 

00:00:00:00:00:00).  

For Ethernet, publishing a SERVICE in the “*” CONTEXT means this service will be 

resolvable by anyone on the entire segment. Here is an example, with the IDP e being 

attached to some Ethernet FB in node A, and IDP f being attached to some Ethernet FB in 

node B.  

  In node A, some IP FB does:  publish(e, "*", "1.2.3.4"); 
  In node B, some IP FB does:  resolve(f, "*", "1.2.3.4");  

  

and the IP FB in node B obtains an information channel (IC) to the IP FB (i.e. the 

SERVICE "1.2.3.4") in node A. 

Note that because a resolution inside the Ethernet compartment is basically the equivalent 

of an ARP request, most publish and resolve use the “*” CONTEXT. Note that similar to 

ARP, there is a problem if two FBs publish the same SERVICE in the “*” CONTEXT 

because a later resolution will receive 2 different answers (ARP suffers from the same 

problem).  

However, if one wants to resolve a particular service at a known location 

(11:22:33:44:55:66), it is possible to do 

  resolve(e, "11:22:33:44:55:66", "whatever_service"); 
 

in order to obtain an information to some service at a particular location (i.e. given as the  

CONTEXT of the resolution request). 

Note that with the Ethernet compartment publishing something at a remote location 

makes no sense so doing the following publish fails if the FB making the API call is not 

located on 11:22:33:44:55:66. 

  publish(e, "11:22:33:44:55:66", "my_service"); 
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IP Compartment 

For this compartment, the “*” CONTEXT means either the subnet broadcast address (e.g. 

10.1.2.255 for the subnet 10.1.2.0/24) or the undefined broadcast 255.255.255.255. In any 

case, such broadcast is restricted to the link segment. The “.” CONTEXT means the 

loopback address 127.0.0.1 (node-local scope).  

Publishing a service in the “*” CONTEXT means that this service is resolvable from 

anywhere. However, doing a resolve in the “*” CONTEXT means resolution is restricted 

to the link segment, because flooding the entire IP compartment is not feasible (makes no 

sense). Typically, one has to better specify the CONTEXT. Here is an example with IDP 

i being attached to some IP FB in node A and IDP j being attached to some IP FB in node 

B.  

 In node A, some web server FB does:  publish(i, "*", "tcp:80"); 

 --> let say the IP FB in node A has IP address 1.2.3.4 

  

 In node B, some FB does:  resolve(j, "1.2.3.4", "tcp:80"); 
 --> to obtain an IC to the web server in node A 

 

Note that the SERVICE “tcp:80” is of course different based on the CONTEXT because 

in IP the CONTEXT defines the location in the IP compartment.  

For multicast, one could publish a given service with the corresponding IP multicast 

address (resolution is equivalent). For example: 

 In node A, publish(i, "224.0.0.9", "rip_routing"); 

 In node B, publish(j, "224.0.0.9", "rip_routing"); 
 In node C, resolve(k, "224.0.0.9", "rip_routing"); 

 

 --> to obtain at node C a broadcast IC to all instances (i.e. in nodes 

A and B) of RIP on the link segment. 

 

DNS Compartment 

The DNS compartment was not implemented in ANA, but we provide below a possible 

design for it. In this example, the CONTEXT in DNS is the record type: that is it defines 

the resolution scope inside the range of possible DNS records. 

Here are some examples, with IDP d being attached to some DNS FB. Also note that the 

resolve primitive makes no sense in the DNS compartment because this compartment 

does not offer information channels, it only returns some information so we have to use 

the lookup primitive. 

To perform a lookup in the DNS compartment, one can do: 

 lookup(d, "A", "www.dummy.com"); 
 --> returns an IPv4 address of www.dummy.com 

 lookup(d, "AAAA", "www.dummy.com"); 

 --> returns an IPv6 address of www.dummy.com 

 lookup(d, "MX", "dummy.com"); 

 --> returns the MX (email server) record for dummy.com 

To publish en entry in the DNS compartment, one issue is that one has to pass 3 

arguments: the CONTEXT (”A” or “AAAA” or “MX” ...), the DNS name and the IP 
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address. This means the SERVICE argument must be used to encode 2 parameters (i.e. 

the DNS name and the IP address), so we have to do some formatting trick to fit 2 

arguments in the SERVICE. 

 
 publish(d, "A", "www.example.com|1.2.3.4"); 

 --> note that the SERVICE is used to pass 2 arguments 
 

This is not very elegant, but in the mean time there is no equivalent in the Internet/socket 

world of today: that is, today an application cannot publish an entry in the DNS. Another 

way of doing this would be that the DNS compartment FB could check the CONTEXT of 

the FB making the publish call and use it to perform the publish. For example, let assume 

that an IP FB with IDP i attached to it has the (source) CONTEXT=”1.2.3.4”. The IP FB 

would do:  

 publish(d, "A", "www.example.com"); 
 (IDP i is implicitly passed to the DNS FB) 

 

The DNS FB could check the CONTEXT of IDP i and obtain the value “1.2.3.4”. Hence 

with this technique there is no need to pass 2 arguments via SERVICE. However, this 

requires that any FB using the DNS compartment must set its local CONTEXT value so 

that it can be obtained by the DNS compartment FB. 

  

Publish/Subscribe protocol 

Publish/subscribe protocols are quite particular because with this communication model 

some content can be “pushed” in the network even though there is no active receiver. A 

receiver can then later notify its interest for the content which is then “pulled” to the 

receiver. 

In ANA, this means that a publish/subscribe compartment must accept resolve and send 

requests even if there is no reachable receiver. The content must be stored in the 

compartment so that it can later be retrieved when a receiver notifies its interest via the 

publish primitive. 

Here is an example, with the IDP a being attached to some pub/sub FB in node A, and 

IDP b being attached to some pub/sub FB in node B.  

In Node A, an FB providing some content does: 

  resolve(a, "*", "some_content"); (this returns IDP s) 

  send(s, some_content); (this inserts the content in the compartment) 

 

In Node B, an FB willing to get that content can later do: 

  publish(b, "*", "some_content"); 

 

to notify its interest for the content and retrieve it immediately (remember that in ANA 

the publish primitive sets up a callback function for receiving data). 


