
Meta models and Meta-models and
Grammars
Prof. Andreas Prinz

Introduction, Compilers
Modelling & Meta-modellingModelling & Meta-modelling
Examples
Meta-models vs. Grammars
Summaryy

Challenges for Compilers
•graphical languages / combined languagesgraphical languages / combined languages
•fast production of compilers:

• domain specific languages
• small languages

•platform dependent code generation
•combination of tools
•language design!

•but also: less focus on optimization because
of high-level output languages

Prepared by Andreas Prinz 2

of high-level output languages

Solution 1: abstract syntax
Graphical Editor Parser Text editor

i l f

Graphical Editor Parser Text editor

Exchange Formatinternal format Exchange Format
(XMI, ASN.1)Static checks (OCL)

Code generationTest case derivation Proofs

• Solved: many input/output formatsy p / p
• Graphical / Domain specific languages, many
transformations

• internal format based on: abstract syntax, meta-

Prepared by Andreas Prinz 3

• internal format based on: abstract syntax, meta
model, MOF-structure

Importance of abstract syntax
generated (html web page)

Representation

generated

g
code

(xml check descr.) (python code)

(p g)

(web page model)
Model

generated
Model(checking model) (code model)

(web page model)

checking Tools
(t i t)

transformation
tool

generated
tool

(access. checker)

(checks compiler) (h k)(type,consistency) (checks compiler) (access. checker)

Prepared by Andreas Prinz 4

Problem speed / many languages
•Why do we need many languages?Why do we need many languages?

• Higher abstraction levels – use of models
•A model is an abstraction of a (part of a)

tsystem.
• one model describes several systems, one system
can have several models

• simplified view of a system with respect to criteria
• needs a representation, e.g. using a language

•Models on different abstraction levels: •Models on different abstraction levels:
Modelling language, Programming Language,
Assembler, Machine code, Bits, Electricity,
Atoms

Prepared by Andreas Prinz 5

Atoms, …

Solution: Language Description
•Do not write compilers but describe •Do not write compilers, but describe
languages

•Meta-model = high-level description of •Meta model high level description of
a language
•narrow view: concepts of the languagenarrow view: concepts of the language
•wider view: all important aspects of the
language, i.e. concepts, presentation,

d dstatic and dynamic semantics
•Meta-models (language descriptions)

 l l d h t
Prepared by Andreas Prinz 6

are also languages and have aspects.

Aspects of Compilers/Languages
•Language structure: What are the •Language structure: What are the
concepts? How are they related?

•Static semantics: additional conditions •Static semantics: additional conditions,
what is allowed?

•Representation: How are programs •Representation: How are programs
written? -> graphical vs. textual

•Dynamic semantics: What do the •Dynamic semantics: What do the
programs mean? How to generate code
for them?

Prepared by Andreas Prinz 7

Aspects of a language & tools

Access
interface

Repositor
y

Graphical
Exchange

format

executiongraphical

p
editor

Simulator

Structure

Constraints

Semantics

transform

Representation

textual

Textual
editor

• Build a tool
from this info

• Idea: The meta-

Parser
Checker

Prepared by Andreas Prinz 8

Idea: The meta
model IS the
tool.

Transformator

Aspects for SDL and UML

Structure
formal EBNF

Semantics
formal ASM

execution

Representation
informal EBNF

graphical

SDL
formal EBNF

Constraints
formal PC1

formal ASM

transform

informal EBNF

textual

Structure Semantics

execution

Representation

graphical

UML Structure
formal MOF

Constraints
formal OCL

Semantics
informal text

transform

Representation
informal text

textual

UML

Prepared by Andreas Prinz 9

Language support in MDA and Eclipse

Structure
MOF

Semantics

execution
action

Representation

graphical
HUGN

MDA
MOF

Constraints
OCL

transform
QVT

textual
HUTN

Structure

execution

graphical
GEF/GMFeclipse

Structure
EMF

Constraints
OCL

Semantics

transform
xtend/xpand

Representation

textual
xtext

(oaw)

Prepared by Andreas Prinz 10

Simple sample structure (EMF)
PuzzlePuzzle

C l column
dimension

1..*
Field

Column

Row

column

rowField
field

Box

Row

cells
box

Cell
llV l

cells
cellsB
cellsR
cellsC

Prepared by Andreas Prinz 11

cellValue cellsC

Simple sample constraints (OCL)
context Field inv uniqueICellValues:context Field inv uniqueICellValues:

self.cells->forAll(c1,c2 : Cell | c1<>c2 implies
c1.iCellValue <> c2.iCellValue)

context Cell inv rowFromCell:

self.row -> size()=1

context Puzzle inv numberOfBoxes:

self.Elements->select(f : Field | f.oclIsTypeOf(Box))

Prepared by Andreas Prinz 12

-> size()=9

Simple sample text syntax (TEF)
syntax toplevel PuzzleTpl, ecorepath “…" {

element CellTpl for Cell{ single for iCellValue, with INTEGER; }
element RowTpl for Row{

"Row"; "(";
sequence for cellsInRow, with @CellTpl, seperator ",", last false;
")";

}}
element PuzzleTpl for Puzzle{

"Puzzle"; "("; single for iDimension, with INTEGER; ")"; "=";
sequence for Elements, with @FieldTpl, seperator ",", last false;q , p , p , , ;

}
choice FieldTpl for Field{ @RowTpl }

}

Prepared by Andreas Prinz 13

}

Simple sample graphics
Sudoku DiagramSudoku

rows subsets diaContents

Diagram

rows subsets diaContents
Row Container

Cell Rectangle
cells subsets contents

Prepared by Andreas Prinz 14

Simple sample transformation (QVT)
transformation theOne (source : sudoku, target: sudoku){

top relation change1to16 {
checkonly domain source sudoku:Cell { iCellValue = 1 };
enforce domain target sudoku:Cell { iCellValue = 16 };

}
top relation change6to11 {

checkonly domain source newstructure:Cell { iCellValue = 6 };y { };
enforce domain target newstructure:Cell { iCellValue = 11 };

}
top relation nochange { value: Integer;p g { g ;

checkonly domain source newstructure:Cell { iCellValue = value };
enforce domain target newstructure:Cell { iCellValue = value };
when{ iCellValue <> 1 or iCellValue <> 6; }

Prepared by Andreas Prinz 15

{ ; }
} }

Simple sample execution
Run(s:Sudoku) =defRun(s:Sudoku) def
forall f in self.field do RunF(f)

Runf(f:Field) =defRunf(f:Field) def
choose c in self.cell with c.value=null

and c.possible.size = 1and c.possible.size 1
choose v in c.possible do c.value:= v

choose c in self.cell with c.value<>nullchoose c in self.cell with c.value null
forall cc in self.cell do
delete c.value from cc.possible

Prepared by Andreas Prinz 16

delete c.value from cc.possible

Problem area execution
Syntax RuntimeSyntax Runtime

Meta-model Cell RTCell
 hi te.g. history,

possibilities

Model X:Cell A: RTCell

B: RTCell

Prepared by Andreas Prinz 17

Problem area “representation”
•There are usually several representations for There are usually several representations for
the same meta-model instances.

•Tools and theory exist only for the case 1:1.
•A representation is a separate model that is
related to the meta-model.

signal Sig1, Sig2; signal Sig1;
signal Sig2;

Sig1: SignalDefinition

Sig2: SignalDefinition
signal Sig1;

signal Sig2;

Prepared by Andreas Prinz 18

g g signal Sig2;

Meta-models versus grammars
• Advantages of grammars

• Strong mathematical basis
• Tree-based
• Trees can be extended into general graphs
• Several advanced tools available• Several advanced tools available
• Easily understandable

• Advantages of meta-models
• Direct representation of graphs (graphics!)
• Namespaces and relations between language elements (in

particular for language transformations and combinations)
• Object-oriented definition of oo languages
• More problem-orientedp
• Reuse and inheritance
• Tools allow direct handling of models (repositories)
• Structuring possible (e.g. packages)

Prepared by Andreas Prinz 19

Grammars meta-models
1. Every symbol is represented with a class.y y p
2. A rule with a single symbol on the rhs is

represented with an association between the class
representing the lhs and the rhs.

3. A rule with a composition on the rhs is represented
with an association for every sub-expression.

4. A rule with an alternative on the rhs is represented p
with a generalization for every sub-expression.

5. A sub-expression consisting of just one symbol is
represented with the symbol’s class.

6. A sub-expression being a composition or an
alternative is represented with a new class with
new name. The composition is then handled like a

l

Prepared by Andreas Prinz 20

rule.

Using the transformation for SDL
• Joachim Fischer, Michael Piefel, Markus Scheidgen: , , g
A Metamodel for SDL-2000 in the Context of
Metamodelling ULF in Proceedings of SAM2006

• Introduction of abstract concepts• Introduction of abstract concepts
• General: namespace, namedElement, typedElement
• Specific: parametrizedElement, bodiedElement

Introduction of relations• Introduction of relations
• Procedure name versus procedure definition

• Deletion of grammar artefacts
• Referencing: identifier, qualifier
• Names in general
• Superfluous structuring

Prepared by Andreas Prinz 21

p g

Conclusions / Summary
• Future language definitions based on meta-models.g g

• definition of good meta-models is difficult
• need also agreement (standard)
• patterns for good models needed, maybe joint concepts

• Meta-models / Languages have several aspects:
structure + constraints, syntax, semantics

• Formal language definitions allow tool generation
• Direct access to the models
• Easy exchange of representation or several of them
• Combination of tools handling the language

D i ti f l ti b t l• Description of relations between languages

• This leads to model-driven compiler technology.

Prepared by Andreas Prinz 22

A meta-modelling architecture

OMG Level Examples Grammar
example

OCL
example

3 = meta MOF EBNF MOF

«component»
MOF

M3
3 = meta
meta model

MOF EBNF MOF

2 = meta UML MM Java OCL

«component»
UML Metamodel

M2

model grammar language

1 = model UML Model a program a formula
«component»
UML Model

M1
0 =
instances

real objects A run a truth
value«component»

User Data

M1

Prepared by Andreas Prinz 23

M0

Instances on several levels
Class

Property
*

name : String
isAbstract:Boolean

name =“Class”
isAbstract =false

Class:Class

d
p y

name:String
name : String
isAbstract:Boolean

owned-
Attribute

Class

M3

name : String
isAbstract:Boolean

Class

M2

name =“Class”
isAbstract =false

Class:Class

Person
M1

M2

:Property :Property
name=“name”name =“isAbstract”

Prepared by Andreas Prinz 24

:PersonM0

