Compilal6

Language specification

INF5110, spring 2016
IFI

Table of Contents

1

Introduction................... ..., 1
1.1 Notational conventions and syntax of this document 1
Lexical aspects..................... 2
2.1 Identifiers and literals......... i i i 2
2.2 COMIMENtS . . ettt 2
Data types 3
3.1 Builtindata types........oiiii i 3
B30 O - T 3
Syntax ... 4
N 8 = 0010 =) PP 4
4.2 Precedence.oo. i 5
4.3 ASSOCIALIVILY . .ottt 5
Parameter passing.............................. 6
5.1 Call-by-value.o 6
5.2 Call-by-referenceo 6
5.3 Small example for call-by-reference................ 6
Standard library 7
Static semantics / typing / evaluation. 8
7.1 Binding of names i 8
7.2 Typing of compound constructscooiiiiiiii... 8
7.3 Types and implicit type coversionoa. 8
7.4 Short-circuit evaluation oo i i 8
Procedures 9

Further conditions

Chapter 1: Introduction 1

1 Introduction

This document specifies and describes the syntax and the static semantics of the language
Compila16. The dynamic semantics, i.e., the description of the language’s behavior when
being executed, should be fairly clear even without explicit specification, at least, clear
enough for the first oblig which concerns itself with the front-end of the compiler, in par-
ticular, the syntactic aspects of the language, i.e., the lexer and the parser. Further details
concerning the dynamic semantics might follow in connection with the second oblig.

1.1 Notational conventions and syntax of this document

In the description of the grammar later, we use capital letters for non-terminals. As meta-
symbols for the grammar, we use (commas used as “meta-meta symbols” in the enumera-
tion):
_>, |; (,), {, }; [;], "

Here, {...} represents iteration of zero or more times, [...] representions optional

clauses. Everything else, written as contiguous sequences, are terminal symbols. Those
with only small letters are reserved keywords of the meta-language.

Note that terminal symbols of the Compila-language are written in “string-quotes” (with
a " at the beginning and the end) to distinguish them from symbols from the meta-language.
Some specific terminal symbols are written in capitals, and without quotes. Those are

o NAME,
INT_LITERAL,
FLOAT_LITERAL and
STRING_LITERAL.

See the following section about lexical aspects for what those terminal symbols exactly
represent.

Chapter 2: Lexical aspects 2

2 Lexical aspects

2.1 Identifiers and literals

NAME must start with a letter, followed by a (possibly empty) sequence of numeric
characters, letters, and underscore characters. Capital and small letters are considered
different.

All keywords of the languages are written in with lower-case letters. They cannot be
used for standard identifiers

INT_LITERAL contains one or more numeric characters.

FLOAT_LITERAL contains one or more numeric characters, followed by a decimal point
sign, which is followed by one or more numeric characters

STRING_LITERAL consists of a string of characters, enclosed in quotation marks (").
The string is not allowed to contain line shift, new-line, carriage return, or similar.
The semantic value of a STRING_LITERAL is only the string itself, the quotation marks
are not part of the string value itself.

2.2 Comments

Comments start with // and the comment extends until the end of that line (as in, for
instance, Java, C++, and most modern C-dialects)

Chapter 3: Data types 3

3 Data types

3.1 Built in data types

The language has 4 built-in types and user-defined types:
e Built-in types
1. floating point numbers ("float"),
2. integers ("int")
3. strings ("string"), and
4. booleans ("bool").

o User-defined types: Each (name of a) class represents a type

3.2 Classes

The language supports a (very) simple form of classes. The classes only contain instance
variables as members, but neither supports methods nor inheritance nor explicitly pro-
grammable constructors. They support instantiation via the new keyword. Another aspect
which resembles classes as in Java is that a variables of class type contains either a pointer
to an object of that class type or the special pointer value null.!

1 Side remark: those class types and the corresponding objects are very simple. Without inheritance and
methods and further “object-oriented complications”, the class types resemble more closely to named
record types than full classes —record types are otherwise also known as struct types— and objects
correspond to records (also known as “structs”).

Chapter 4: Syntax 4

4 Syntax

4.1 Grammar

The following productions in EBNF describe the syntax of the language. For precedences
and associativity of various constructs, see later.

PROGRAM -> "program" NAME "begin" { DECL ";" } ‘“end" ";"
DECL -> VAR_DECL | PROC_DECL | CLASS_DECL
VAR_DECL -> "var" NAME ":" TYPE
PROC_DECL -> "proc" NAME

(" [PARAM_DECL { "," PARAM_DECL } 1 ")"

[":" TYPE]

"begin" { DECL ";" } { STMT ";" } "end"
CLASS_DECL -> "class" NAME "begin" { VAR_DECL ";" } "end"
PARAM_DECL -> ["ref"] NAME ":" TYPE
EXP -> EXP LOG_0OP EXP

"not" EXP

EXP REL_QOP EXP
EXP ARIT_OP EXP

I
I
I
| "(" EXp ")"
| LITERAL
| CALL_STMT
| "new" NAME
| VAR
VAR -> NAME
| EXP "." NAME
LOG_OP —> "&&" | "||"
REL_OP —> ongm | gt | onymo | ownson | onon |ongsn
ARIT_DP —> ngn | n_n | Ny I u/u I u#u
LITERAL -> FLOAT_LITERAL | INT_LITERAL | STRING_LITERAL
| "true" | "false" | "null"
STMT -> ASSIGN_STMT
| IF_STMT
| WHILE_STMT
| RETURN_STMT
| CALL_STMT
ASSIGN_STMT -> VAR ":=" EXP
IF_STMT -> "if" EXP "then" "begin" { STMT ";" } "end"
["else" "begin" { STMT ";" } "end"]
WHILE_STMT -> "while" EXP "do" "begin" { STMT ";" } "end"
RETURN_STMT -> "return" [EXP]
CALL_STMT -> NAME "(" [ACTUAL_PARAM { "," ACTUAL_PARAM }] ")"
ACTUAL_PARAM -> "ref" VAR | EXP

TYPE -> "float" | "int" | "string" | "bool" | NAME

Chapter 4: Syntax 5

4.2 Precedence

The precedence of the following constructs is ordered as follows (from lowest precedence to
the highest):

1.

2
3
4
D.
6
7
8

. &&
. not

. All relational symbols

+ and -
* and /

. # (exponentiation)

. (“dot”, to access fields of an “object”)

4.3 Associativity

The binary operations ||, &&, +, -, *, and . are left-associative, but # are right-
associative.

Relation symbols are non-associative. That means that for example a <b + ¢ <d is
illegal.

It’s legal to write not not not b, and it stands for not (not (not b)).

Chapter 5: Parameter passing 6

5 Parameter passing

When describing the parameter passing mechanisms of the language, the document distin-
guishes (as is commonly done) between

e actual parameters and

e formal parameters.

The actual parameters are the expressions (which include among other things variables)
as part of a procedure call. The formal parameters are the variables mentioned as part of
procedure definition. The language supports two parameter passing mechanisms:

5.1 Call-by-value

This is the default. The formal parameters are local variables in the procedure definition.
When a procedure is being called, the values of the local parameters are copied into the
corresponding formal parameters. This being the default, the parameters are just given
without extra keywords specifying the parameter passing mechanism.

5.2 Call-by-reference

In this case, when calling a procedure the address of (or reference to) the actual parameter
is passed into the formal parameter. Compila uses the keyword ref, which must be used
in the procedure definition as well, in front of the corresponding actual parameters when
calling the procedure.

5.3 Small example for call-by-reference

program SwapExample
begin
proc swap (ref a: int, ref b : int) {
var tmp : int;

tmp := a;

a := b;

b := tmp;
end;

proc Main ()
begin
var x : int;
var y : int;

swap (ref x,ref y);
// now, x = 84 and y = 42
end;
end;

Chapter 6: Standard library 7

6 Standard library

The programming language comes with a standard library which offers a number of 10-
procedures. All reading, i.e., input, is done from standard input (“stdin”). All writing, i.e.,
output is to standard output (“stdout”)

proc readint(): int read one integer

proc readfloat(): float read one float

proc readchar(): int read one character and return its ASCII value. Return -1 for EOF
proc readstring(): string read a string (until first whitespace

proc readline(): string read one line

proc printint(i:int) write an integer

proc printfloat(f:float) write one floating point number

proc printstr(s:string) write one string

proc printline(s:string) write one string, followed by a “newline”

Chapter 7: Static semantics / typing / evaluation. 8

7 Static semantics / typing / evaluation.

This part is not needed for Oblig 1.

7.1 Binding of names

The using occurence of an identifier (without a preceding dot) is bound in the common way
to a declaration. This association of the use of an identifier to a declaration (“binding”)
can be described informally as follows: Look through the block or scope which encloses the
use-occurence of the identifer (where the block refers to the procedure body or program).
The binding occurrence corresponding to the use occurence is the first declaration found
in this way. If no binding occurence is found that way, the program is erroneous. Formal
parameters count as declarations local to the procedure body.

Use occurenccs of a name preceded by by a dot correspond to the clause EXP "." NAME
in the production for the non-terminal VAR in the grammar. Those names are bound by
looking at the type of EXP (which is required to be a class-type) and look up the field with
name NAME in that class. It’s an error, if EXP is not of class-type or else, there is not such
field in that class,

7.2 Typing of compound constructs

e expressions: expressions need to be checked for type correctness in the obvious manner.
The whole expression (if it type-checks) will thus carry a type.

e assignments: Both sides of an assignment must be of the same type. Note: it is allowed
to assign to the formal parameters of a procedure. That applies to both call-by-value
and call-by-reference parameters. Of course, the effect of an assignment in these two
mechanisms is different.

e conditionals and while loop: the condition (i.e., expression) in the conditional construct
must be of type bool. Same for the condition in the while loop.

o field selection:
e the expression standing in front of a dot must be of class type.
e the name standing after a dot are the name of a field /attribute of the class type

of the expression in front of the dot. The type of the field selection expression (if
it type checks) is the type as declared for the field of the class.

7.3 Types and implicit type coversion

It is allowed to assign an expression of type int to a variable of type float. The inverse
situation is not allowed. There’s no type cast operator. If an arithmetic expression has at
least one operand of type float, the operation is evaluated using floating point arithmetic
and the result is of type float. Exponentiation is always considered done with floating
point arithmetic and the result is of type float.

7.4 Short-circuit evaluation

The logical operators && and || use so-called short-circuit evaluation. That means that if
the value of the logical expression can be determined after one has evaluated the first part,
only, the rest of the expression is not evaluated.

Chapter 8: Procedures 9

8 Procedures

e In a procedure, all declarations are required to occur before executable code (state-
ments). In a procedure, the same declarations are allowed as on the outermost, global
scope, i.e., procedure-local declarations of variables, procedures, and classes are allowed.

e Procedures called within an expression must have a defined return type. That type
must match with the way the call is used in an expression.

e Concerning the number and types of the parameters of a procedure: they must coincide
comparing the declaration/definition of the procedure and the use of a procedure. That
requirement applies also to the parameter passing mechanism (i.e., whether the variable
resp. actual parameter is marked as “by ref”.

e Return statements:

e A return-statment is allowed only in procedure-definitions. Such a statement
marks that the procedure terminates (and returns). In addition, the return state-
ment gives an expression for the value to be returned to the caller.

e If a procedure is declared without return type, the procedure does not need a
return statement. In that case, the procedure returns (without a return value)
when the last statement in the procedure body has been executed.

e If a procedure has declared a return type, its body is required to have a return
statement (with corresponding expression of the correct type). That statement
need to be the last statement in the procedure’s body.

Chapter 9: Further conditions 10

9 Further conditions

e Declarations must be unique per block. Two declarations (within one block) of a pro-
cedure, a class, or a variable with the same name are considered as double declarations,
which are forbidden.

e The name of a formal parameter must not collide with names of local declarations
within the procedure. Besides, the names of all formal parameters of one procedure
must by distinct.

e All names being used must be declared.

e FEach program must have a procedure named Main. This procedure is the one called
upon start of the program.

