UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF5110 — Kompilatortteknikk
Day of examination: 8. Juni 2016

Examination hours: 14.30-18.30

This problem set consists of 17 pages.

Appendices: None

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

e You should read the whole problem set before you start, getting an
overview can help to make wise use of the time.

e Problems 1 — 4 are basically independent from each other. For the
subproblems of one problem, it is often advisable to tackle them in the
order stated.

e Besides writing in a readable manner, draw requested figures in a clear
manner.

e Give concise and clear explanations!

Good luck!

(Continued on page 2.)

Examination in INF5110, 8. Juni 2016 Page 2

Problem 1 Regular expressions and scanning
(weight 24%)

la Regular languages (weight 7%)

Let X be a non-empty finite alphabet, otherwise left unspecified. Consider

the following language:
L={ww|weX*},

in other words: all strings repeating a word over X two times in a row. Is the
language regular or not? If the language is regular, give a regular expression
capturing the language. If not, give a short argument, explaining why not.
Are there special cases where the answer would be different from the general
case?

1b Minimal automaton (weight 7%)

Is the following automaton minimal? Give a short explanation. You may
make use of the minimization algorithm or, alternatively, give a short
explanation clarifying the situation.

b
a
a,c
a,b,c
b a7c
start —> b

c

a,b c

lc “C-style” comments (weight 10%)

The task here is to specify a regular expression for “C-style” comments. To
notationally (but not conceptually) ease the task, we make the following
simplifications compared to the normal situation for C comments:

(Continued on page 3.)

Examination in INF5110, 8. Juni 2016 Page 3

The alphabet for our special version of the “C-language” consists of the
following 3 symbols
Y={z 0, [}

e Arbitrary alphanumerical symbols are represented by z, o, and [

(“slash”).
e Comments here are not delimited by /* */ as in C, but by
/o ... o/. This is simply done to avoid confusion with the regular-

expression star-operator when doing a handwritten solution.
So, comments are delimited by “/0” and “o/”.

More precisely: a comment starts with the two symbols “/0” and
ends with the first subsequent “o/”. For the task, the delimitors
slash-o and o-slash are part of the comment. Comments cannot
be nested.

Note:

e [t is allowed that “o” and “/”, and also “/0” occur inside a comment.

e “/0/” is not a comment, but “/oo/” and “/o/0/” are.

Give a single regular expression that matches the comments specified as
above.

Solution:

(i) The special cases would be whether ¥ has 2 or more symbols, or less.
Left out is the case of X = &; in that case one might give the answer
L = {e}, but that’s too “specialistic” and some books explicitly define
alphabets as non-empty, as anyhow irrelevant.

(i) ¥ = {a,b} as an example for 2 or more symbols: That language
is not regular. It would involve “counting” and in particular
remembering the order in which way the a’s and b’s in the first half
or a word ww in L are arranged, something which is not doable
with finite memory.

(ii) ¥ = {a}: The language represents words with an even number of
a, which certainly can be represented by a regular expression:

(aa)*

(ii) The automaton is not minimal. One can identify 1 and 3. That’s the
short answer (without goint through the split-algo).

(Continued on page 4.)

Examination in INF5110, 8. Juni 2016 Page 4

(iii) As usual, there is not one single possible solution. Here are a few, all
start and end the same, of course. Only the middle part, the comment
string itself, can be differently represented.

[o (o™= | [)*o"] (1)
[o[("2 [")0"] (2)
[o (o2 [")[0" (3)

(4)

The basic thing to avoid is to have a o immediately followed by a [,
therefore we need a z in between. A more fine point is that there does
not need to be a z at all, but still there may be a sequence of 0's.

(Continued on page 5.)

Examination in INF5110, 8. Juni 2016 Page 5

Problem 2 Context-free languages and parsing
(weight 26%)

2a LR(0)-DFA (weight 12%)

Consider the following context-free grammar:

S - AB
A - Sy |x
B - yS |y

In the grammar, x and y are terminals, S, A, and B are non-terminals, with
S as start symbol. After extending the grammar with a new non-terminal
S’" as new start-symbol and the corresponding production, do the following
steps:

(i) give the First- and Follow-sets of the non-terminals.
(ii) give the DFA of LR(0)-items (numbering the states for later reference).

(iii) Is the grammar SLR(1) or not? Explain. In case the grammar is not
SLR(1), identify corresponding conflicts in terms of in which state(s)
they occur and what conflicting reactions occur under which input.

2b Bottom-up vs top-down (weight 7%)

Answer the following two questions, where you should try to keep the
required examples simple. Note: it’s not required to find the simplest possible
examples, but please try not to use more than 3 non-terminals or more than
4 terminals (not counting $).

(i) Give an example of a context-free grammar which is LL(1) but not
LR(0).

(ii) Give an example of a context-free grammar which is LR(0) but not
LL(1).

Give a short explanation in each case, justifying why the chosen example does

or does not belong to LL(1) resp. LR(0). It is not required to give parsing
tables as justification.

2c Memory usage (weight 7%)

The following two grammars are SLR(1) (no proof or argument required for
that), both representing the language a*:

(Continued on page 6.)

Examination in INF5110, 8. Juni 2016 Page 6

grammar G;: S - A grammar Go: S - A
A - Aa | e A - aA | e

The task here is to compare the memory efficiency of the SLR(1) bottom-up
parsers for the 2 grammars. When parsing a™ as input, what is the maximal
stack size during the parser run. Use “big-O” notation, for instance using
O(1) for constant stack memory usage, O(n) for stack-size linear in the size
of the input string etc.).

You may use a small example runs as illustration of your argument. It’s not
required to give the SLR(1)-parsing table. O

Solution:

(i) The task is completely standard.

(i) The sets are given in Table 1 and the DFA is given in Figure 1.

Tabell 1: First- and follow-sets

non-term. | First Follow
S’ x $
S x Sy
A X y
B y 8.y

(ii) The grammar is not SLR(1). That can be seen in state 7: Since
FollowB contains y (a terminal which follows the “parser position
.7 in one item), there’s a shift-reduce conflict on symbol y. Another
“suspicious” state is 1, but this one is no conflict (as can be seen
from the follow-set of S’).

With the grammar changed with the additional production: state
6 is now also a state containing an complete item. That makes
the state suspicious as well. The complete item is for a production
with the left-hand side B. The follow of B does not contain x, so
that one is fine, as well.

(ii) Unlike the previous one, this is about grammars not languages. It’s best
answered by remembering which features don’t work for certain classes
of grammars and quickly check if a simple example can be covered by
the other class. Of course the grammars need to be unambiguous. So
the task is to find a simple case of unambigous grammars building in
the problematic productions for both LL(1) and LR(0).

(Continued on page 7.)

Examination in INF5110, 8. Juni 2016 Page 7

start —> S— AB. A- Sy.

Figur 1: LR(0)-DFA

(i) Problematic for LR(0) are e-productions. For those, a reduction-
step is possible, and we need a state (resp. a corrsponding non-
terminal) which allows also a shift. The following grammar is the
simplest for that:

A—-e€ | a (5)

For LL(1) parsing, e-productions are unproblematic.! Note that
the language is finite (i.e., not just regular, but basically trivial
and it consists of only one symbol). It might sound unusual to use
“recursive descent” in that situation, basically, there are only two
cases to check: whether the next “symbol” is $ or the next symbol
is a followed by $. Still: technically, the grammar is not LL(1).

Alternatively, the following is a plausible simple solution, as well:
A-e€ | aA (6)

The grammar is right-recursive (which is fine for LL(1)) but the
e-production makes it non LR(0), as above.

Of course the left-recursive alternative

A->e | Aa (7)

'Factually, transformations covered in the lecture to massage non-LL(1)-grammars in
an equivalent representation which might become LL(1) (like left-factorization) routinely
added € productions.

(Continued on page 8.)

Examination in INF5110, 8. Juni 2016 Page 8

(i)

for the same language would not be LL(1).

For the reverse-directions: LIL(1)-parsers cannot deal with com-
mon left factors.

A-ab | ac (8)

Consequently, the grammar is not LL(1). It’s LR(0) though: There
is no reason for any conflict, as one can easily check. For reference,
the corresponding LR(0)-DFA is given in Figure 2.

A !
start —>» A- A
A— ab
b
A—- a.b
A— a.c c
A— ac

Figur 2: LR(0)-DFA

Remark: As mentioned, left-recursion is problematic for LL(1), as
well. Thus, one might be tempted to use (7) as an example. It’s
certainly not LL(1) but unfortunately, the grammar is also not
LR(1) (still containing an e-production).
Additional remark: Even if we replaced the € with a terminal b
yielding

A-Db | Aa (9>

the grammar won’t be LR(1):
4
A-> A A Al S A. a
start —»| A~ .b A A A— Aa.
A .Aa - ae

Y
A—- b.

Figur 3: LR(0)-DFA (“ba*”)

(iii) The one on the left is O(1), the one on the right is O(n). One possible
answer would of course be make the LR(0)-automaton again (which is
simple enought) and take it from there. If one draws the automaton,

(Continued on page 9.)

Examination in INF5110, 8. Juni 2016 Page 9

one of them has a loop labelled a and the other not. The one with the
loop (which is the consequence of the right-recursion A — aA) obviously
shifts all the a’s, and that leads to O(n)

[t’s not required here to give the full automaton here. Shorter answers
along the lines “left-recursive rules doent not require to build up a stack,
unlike right-recursive” are acceptable as correct as well, perhaps making
use of the two different parse trees and how bottom-up LR-parsers treat

them:
A A
/ \ / \
A a a A
/ \ / \
A a a A
/ \
A A
/ \ / \
e a a e

To build the right-hand tree bottom-up, one needs to remember a lot
of a’s before one start’s building the first finished tree, for the tree on
the left, one can start right-away (all parsers work from left-to-right).

O

(Continued on page 10.)

Examination in INF5110, 8. Juni 2016 Page 10

Problem 3 Attribute grammars (weight 25%)

The lectures presented how to extract from three-address intermediate code
a flow graph. The task here uses a different approach! Instead of taking
three-address intermediate code as starting point, we use the abstract syntax
and extract control flow information directly from there. We use attribute
grammars for that.

We are dealing with a simple language, whose syntax is given by the grammar
below. The form of non-terminals assign and cond are left undefined.

productions remarks
program — begin stmt end begin and end carry a label
stmt — stmt ; stmi
| while cond do stmt cond carries a label
| if cond then stmt else stmt cond carries a label
| assign assign carries a label

Contrary to the flow graphs presented in the lecture for three-address code,
our “abstract flow graphs” consider each assignment and each condition as a
separate node for the graph.

The task now is: add semantic actions to the grammar to calculate a control-
flow information from a syntax tree. Labels are used to identify and represent
nodes of our version of flow graphs.

Starting point: attribute label given We shall assume that the non-
terminals assign and cond as well as the terminals begin and end all
carry an an attribute label, containing a label value for indentification.
These label values are already filled in. So you can make use of, for
instance assign .label but you are not supposed to set the value. All
label values are different.

Attributes first and lasts for stmt: Non-terminal stmt shall carry at-
tributes first (containing a label) and lasts (containing sets of la-
bels). They are supposed to contain the label of the condition /assign-
ment executed first, respectively the labels of those executed last.

Attribute succ: Assume an attribute succ (containing a set of labels),
intended to represent the successor nodes in terms of the control flow.
In that way, they correspond to edges in the abstract flow graph.

For illustration: The left-hand side below contains a piece of concrete syntax
where (for illustration) we have marked pieces with appropriate labels. A
corresponding abstract flow graph is shown on the right-hand side. Note that

(Continued on page 11.)

Examination in INF5110, 8. Juni 2016 Page 11

after the evaluation of the attribute grammar, the succ-attributes indicate
the succssor-nodes.

lo ——
. begin
begin®
. Iy .
x:=9"; I I
. l
|while (x>8)” | stmt

do { if (y=0)"® |
then x:=5M b2 ‘o

else x:=65 cond

}
x := 0l
end’”

So: Give your answer in a filled out table of the following form. The semantic
rules for the production program — begin stmt end are filled in already,
making use of the notation {...} to represent sets.

productions/grammar rules semantic rules
0 | program — begin stmt end stmt .succ = {end.label}
begin.succ = {stmt.first}
1 stmt — assign
2 stmty — stmty ; stmis
3 stmtq — if cond
then stmt,
else stmt,
4 stmty — while cond
then stmt

O

Solution: The best way to attack (or present) the problem is to first do
the two attributes first and lasts, and only afterwards, the successor. The
first- and lasts-attributes are also easier, insofar they are synthesized, and
for most people, purely synthesized attributes seem more natural. Therefore
I start with those. The first- and lasts-attributes can be seen as auziliary

(Continued on page 12.)

Examination in INF5110, 8. Juni 2016 Page 12

attributes used to enabling a more or less straightforward definition of the
succ-attributes.

A good starting point is to fix, what are the actual attributes and for which
nodes. In the text it is stated that stmt carries first and lasts (which is
therefore required). It does not state that other terminals or non-terminals
carry that; and they don't.

It is on the text not explicitly specified, which grammar symbols are supposed
to carry succ as attribute. Indiractly in the graphical representation, it’s
indicated that cond and stmt carry that. What is not depicted in the picture
are assign-non-terminals, 2 one has to figure out that also those are supposed
to carry succ as attributes. Actually, in the concrete illustration, in the
example code, the statements and the assignments are somehow “identical”
in that thet “statements” are actually “assignments’ (via the production
stmt — assign). One has to understand that also assign better carries an
(inherited) attribute succ. If a otherwise correct solution stops determining
the successors at stmt without inheriting it in a last step down to assign, is
perhaps also acceptable, at least not too big an error. For cond, the graphics
indicates that succ is a required attribute and the same for the “concrete
syntax” code example.

An overview over the attributes and to which symbols they belong are shown
in Table 2. The types of the attributes (one label resp. a set of labels) are given
by the task and not repeated in the table. The attributes which are already
given, namely label, are shown in parentheses. The ones in [brackets| are not
actually needed, but they would not hurt either. The end-node should better
not carry a succ-attribute (unlike begin), as there is no meaningful value
to fill in. Practically, a realimplementation would leave a nil-pointer, but for
the declarative framework of attribute grammars (where there are a priori
no such notions as pointers), an attribute for wich there is not real definition
is not adequate. Conceptually, the whole purpose of the labelled end node is
to provide a successor label for those last statements of the “real” program (a
“sentinel node”), to avoid having “nil-pointers” there. Therefore it’s counter-
productive to let end have an undefined /nil-pointer itself. One could accept
a solution which adds succ to end and leave it undefined, even if it’s not
100% kosher. Besides the already labelled symbols, no other grammar symbol
should carry a label. It conceptually does not make sense; besides there’s no
mechanism to add new labels (and the text states all labels are supposed to

be different).

Intuitively, the fact that the first and the last nodes/labels are synthesized
may be seen from two facts: first the leaves of the syntax tree (assignments
plus the special begin and end-nodes) are labelled already and thus in
principle a statement which is an assignment carries the first- and lasts-
information already (in the form of the label). Thus, the information can be

2Actually, since it’s a fragment of a grammar, where assign and cond are left
unspecified, those actually can be seen as playing the role of terminals.

(Continued on page 13.)

Examination in INF5110, 8. Juni 2016 Page 13

symbol attributes

stmt first,lasts, succ

assign ~ (label),[first,lasts],succ
cond (label), [first,lasts], succ
begin (label), succ

end (label)

program first,lasts

Tabell 2: Overview over attributes

propagated only “upwards” in the form of synthesized attributes. Secondly,
the already filled in slot for the production for program makes it into
a synthesized attribute. Of course, the pure fact that program .first is
synthesized does not logically imply that first is synthesized for other
grammar symbols, but is intended as inspiration.?

A final word on why first and last nodes are synthesized. We argued that that
leaves of the tree, the “base cases”, carry that information already filled in.
What makes it a bit strange is that cond carries a label as well despite the fact
that cond nodes in a syntax tree are not leaves. Here one has to understand
the role of first and lasts. In principle cond is not supposed to carry those
attributes resp it’s not necessary/required (that’s why it’s in brackets in the
table). But one can can come up with a reasonable solution where assign
and cond also carry the attributes first and lasts. For assign, it’s pretty
obvious how to define that, for cond, the only meaningful definition is that
the firsts and lasts of cond corresponds to the firsts and lasts of the statement
it belongs to (stmtq in the grammar). It’s omitted in the given solution.

Attributes first and lasts So, let’s start then with Figure 4. Clearly,
the semantics rules are all bottom-up. It’s basically a recursive definition of
the first “node” and the set of last “nodes”, represented by the labels.

One could accept if the non-terminal program were not labelled insofar the
task/table may seem to imply that for that production it’s done already and
that it’s not really needed for the succ-label anyway. Note also that the
definition does not refer to succ at all; as said, the first- and lasts-attributes
are independent from the definition of the successor.

Attribute succ Now, given the labels for the first and the last nodes,
the rules for succ are shown in Table 5. Now the perspective changes:

3In the lecture, there had been examples where attributes of the same name had been
synthesized for one symbol/node class, but inherited for another (for instance for types).
Here, it’s simpler. Of course, one could in general always avoid that situation by simply
using two different attribute names. On the other hand, that may be confusing as well, as
really it’s a “type” which is synthesized a one symbol but inherited at another.

(Continued on page 14.)

Examination in INF5110, 8. Juni 2016 Page 14

productions/grammar rules semantic rules
0 | program — begin stmt end | [program .first = begin.label]
[program .lasts = {end.label}]
1 stmt — assign stmt .first = assign.label
stmt .lasts = {assign.label}
2 stmty — stmiy 5 stmio stmty.first = stmit; . first
stmty.lasts = stmity.lasts
3 stmty — if cond stmty.first = cond .label
then stmt; stmty.lasts = stmt;.lasts U stmty.lasts
else stmt,
4 stmty — while cond stmty.first = cond.label
then stmit, stmty.lasts = {cond .label}

Figur 4: AGrammar for first and lasts

it’s no longer strictly synthesized, That can already be seen in the slot for
program which has been filled out already. The core intuition is: the statement
representing the program as such (i.e., the stmt mentioned in the filled-out
production for program) has its successor filled out by the corresponding
semantic rule (the slot for rule 0). Now, this information has to be pushed
down the syntax tree.

(Continued on page 15.)

Examination in INF5110, 8. Juni 2016 Page 15

productions/grammar rules semantic rules
0 | program — begin stmt end stmt .succ = {end.label}
begin.succ = {stmt.first}
1 stmt — assign assign .succ = stmt.succ
stmty — stmty ; stmtsy stmty .succ = {stmly.first}
stmty.succ = stmtg.succ
3 stmty — if cond cond .succ = stmt;.firstu stmt, . first
then stmt, stmtq,.succ = stmty.succ
else stmt, stmty.succ = stmtgy.succ
4 stmty — while cond cond .succ = {stmt;.first}
then stmt, stmty .succ = {cond .label}

Figur 5: AGrammar for succ
Problem 4 Code generation (weight 18%)

In this problem we look at code generation as discussed in the lecture, i.e., as
covered by the “notat” which had been made available and which covers parts
of Chapter 9 of the old “dragon book” (Compilers: Principles, Techniques,
and Tools, A. V. Aho, R. Sethi, and J. D. Ullman, 1986).

4a Register descriptors (weight 5%)

Register descriptors indicate, for each register, which variables have their
value in this register.

(i) A single register can contain the values of more than one variable. Give
a short explanation/example of how a situation like that can occur.
You can keep it really short.

4b Local optimization (weight 13%)

To get more efficient (i.e., faster) executable code, we want to consider
transformations of three-address intermediate code, but we restrict ourselves
to transformations local to basic blocks. We again assume the code generation
as done in the “notat”

So assume a basic block consisting of three-address instructions. Those look
typically as follows x :=y op z, where x, y, and z are ordinary variables or
temporaries. But constants are allowed as well (for instance, as in x := 6), to
allow examples with not to many variables.

(Continued on page 16.)

Examination in INF5110, 8. Juni 2016 Page 16

We consider as the only allowed optmization to interchange lines of three-
address instructions.

Describe a concrete situation where such an interchange makes
the generated code faster without of course changing the
semantics.

Concrete means, lines of three-address code. Use one register only (called R).
Make all assumptions explicit (“at the beginning of my example, R is empty /R

contains ...”). Explain why the interchange leads to a speed-up, referring to
the cost-model of the notat /lecture. O
Solution:

(a) Register descriptors:

(i) The answer should simply be x:=y where x and y are different
variables (resp. have different home positions), or an explanation
to that effect. It’s not required to give the machine code, an
argument suffices. If one does not mention that x and y are
different, it’s accepted as ok as well.

We have not looked at the concrete code generation procedure for
the x := y. But, it was discussed in the lecture, it’s fairly obvious,
and it is explicitly mentioned in the notat. It should be immediate.

(b) Local optimization: It should be fairly easy to figure out one example
covering at least the spirit. To get a speed-up, we need to avoid register-
memory traffic. One can different points of the code generator to
illustrate the speed-up.

For a correct answer, one should give

e original 3AC program plus clear indication of what is swapped

e the generated machine codes resp. the generated machine code
from the original and explain what changes and why

e mention how that affects the costs in the cost model. Exact
calculation of the given “program” is not needed, but reference
to the cost model is.

The code generation has some fine points (like liveness etc). For a full
answer, let’s not insist on that.

(Continued on page 17.)

Examination in INF5110, 8. Juni 2016 Page 17

N

© 0 N O s W

10
11
12
13
14
15
16
17
18

¥

© 0N O s W

10
11
12
13
14
15

One example: “purging” a/the register In the cost model (and
in general) register-memory traffic costs. Especially it costs more than
operations on registers. The idea of an example is therefore: before the
swap, the only register is being used for one step of the code, after the
swap, it cannot be used for that step, as it’s being used for something
else. That requires that the value has to be stored back to the home
position and reloaded later. That makes the program “more costly”. The
example from Listing 1 and 2 makes use of that.

Listing 1: Reuse of a register for y

// initially , R empty

y (= x + 1 // use R for the result:
// Load x 1
// R —>y (not up-to date)

z =y + 1 // re—-use R (containing y): 0 Reg-Mem move 0
// for loading it. So, (2) of code-gen omits
// the MOV
// however: y needs to be saved (which
// 1is required by get-reg, case (3)
// Store y (because it ’s assumed to be live) 1
// R-> z (not up-to date)

a := tl + t2 // Store R z (save z) 1
// load t1 1
// load t2 1

// R —=> A (not up-to date)

// end of block: save a 1

Listing 2: Reuse of register no longer possible

// initially , R empty

y (= x + 1 // use R for the result:
// Load x: 1
// R |-> y (not up-to date)

a := t1 + t2 // Store R —> y (get-reg —(3) 1
// Load t1 1
// Load t2 1
// R |]-> a (not up-to date)

z =y + 1 // Store a (no reuse) 1
// Load y 1

// result: R <- z (not up-to date)

// end of block: store z 1

